Detection of Impurities in Bulk Drug and Capsule of Fluconazole

Uttam Kumar Sarker1, Md. Mahasin Ali1, Fatiha Farhana1, Md. Atikul Islam2,*, Shifat Kaisar2, Mir Misbahuddin3, Md. Rabiul Islam4 and Md. Elias Molla4

1Department of Chemistry, Faculty of Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh.
2Biochemist, Department of Biochemistry, Khwaja Yunus Ali Medical College and Hospital, Enayetpur, Sirajgonj, Bangladesh.
3Department of Pharmacology, Faculty of Basic Science, Bangabandhu Sheikh Mujib Medical University, Shahbagh, Dhaka, Bangladesh.
4Department of Chemistry, Faculty of Science, Jahangirnagar University, Savar, Dhaka, Bangladesh.

Abstract

Objectives: The purpose of this study was to identify the impurities and their amounts in the fluconazole bulk drug and capsule FLUNAC® (150 mg).

Method: HPLC with diode array detector was used to carry out the study. The composition of mobile phase was acetonitrile: water (85:15 %) with flow rate of 0.7 mL/min and detected at 260 ± 1 nm.

Results: Two impurities (one is known impurity A and other unknown impurity) were detected in the bulk drug and also in capsule FLUNAC (150mg). The total amount of impurities in fluconazole bulk drug and capsule were 0.368% and 0.392% respectively.

Conclusion: The total amount of impurities was less than 1% which is acceptable.

Keywords: Fluconazole, Impurities, HPLC.

Article Info

Received 07 March 2020, Review Completed 03 May 2020, Accepted 08 May 2020, Available online 15 June 2020

Cite this article as:
DOI: http://dx.doi.org/10.22270/ajprd.v8i3.717

Address for Correspondence:
Md. Atikul Islam, Assistant Professor, Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh.

Introduction

Fluconazole is an anti-fungal drug. The triazole antifungal fluconazole is used against superficial and systemic candidiasis and in the treatment of cryptococcal infection for patients with the acquired immuno deficiency syndrome1-4. It is also used for the treatment of fungal infection by inhibiting the action of fungal cytochrome enzyme5-9. Fluconazole decreases ergosterol synthesis by interfering with cytochrome P450 activity, thus inhibiting cell membrane formation of susceptible fungi including B dermatitidis, Epidermophyton spp, Candida spp, C immitis, C neoformans, thus leading to cell death. Fluconazole is formulated in different dosage forms. In USP, three potential impurities of Fluconazole are listed (Fluconazole related compounds A, B, and C). Impurity is defined as any substance co-existing with the original drug, such as starting material or intermediates or that is formed, due to any side reactions. At present the control of pharmaceutical impurities is a demanding issue to the pharmaceutical industry.

The International Conference on Harmonization (ICH) has formulated a workable guideline regarding the control of impurities10. Drug impurity has become essential as per various regulatory requirements. In the pharmaceutical world, an impurity is considered as any other organic material, besides the drug substance, or ingredients, arise out of synthesis or unwanted chemicals that remains with API's. The presence of these unwanted chemicals, even in small amount, may influence the efficacy and safety of the pharmaceutical products11. Impurities can be classified as Organic impurities (process and drug related), Inorganic impurities and Residual solvents. Impurities in new drug substances can be addressed from two perspectives, the chemical aspect which includes classification and identification of impurities, report generation, listing of impurities in specifications, and a brief discussion of...
analytical procedures, the safety aspect which includes the specific guidance for quantifying impurities, substantially at lower levels in a drug substance used in clinical studies12.

MATERIALS AND METHODS

Chemicals

Fluconazole and its three impurities, impurity A, B and C were supplied by Cadila healthcare Ltd. Ahmedabad, India. HPLC grade acetonitril was purchased from E. Merck (Germany). Capsule FLUNACTM (150 mg), fluconazole, batch number: 0909) was supplied by Drug International Ltd, Bangladesh.

Chromatographic condition

The HPLC-UV diode-array system consisted of Agilent model 1200 series solvent reservoir, binary pump, degasser, auto sampler, column oven and photo diode array detector. Chromatographic data were collected and analyzed using Chemstation software.

A reverse-phase high performance liquid chromatography (HPLC) was used for the determination of fluconazole both in fluconazole bulk drug and capsule FLUNACTM (150 mg)13. The chromatographic analyses were performed on an Agilent 5 μm C18 column (150 × 4.6 mm). The mobile phase used for analysis consisted of 85% acetonitril (HPLC grade; E. Merck, Germany) and 15% water was delivered at a rate of 0.7 mL/min. Separations were carried out at 50°C. The wavelength was set at 260 nm with bandwidth 1 nm. Injection of sample (50 μL) was done using an autosampler. The peak with retention time and area were defined using software.

Identification of impurities

One milligram of each impurity (impurity A, impurity B, impurity C) was dissolve into the mobile phase separately and then diluted into different concentrations. One microgram of each sample was injected into the HPLC system separately to identify the peak using retention time. Then all the above mentioned impurities with fluconazole (1 μg each) were mixed in mobile phase of which 50 μL was injected.

One tablet FLUNACTM (150 mg) was powdered and dissolved in 150 mL of mobile phase (1 mg/mL). It was then diluted to 100 μg/mL using mobile phase and finally filtered using syringe filter 0.22 μm. Fifty microliter of the sample was injected into the HPLC system.

RESULTS AND DISCUSSION

The peak of the impurity A appeared first with a retention time of 6.98 min was shown in Figure 2. Other peaks were: impurity B (11.66 min), impurity C (13.02 min). Impurity A=150 μL (10 μg/ml), Impurity B=500 μL (100 μg/ml), Impurity C=8 μL (100 μg/ml). Fluconazole=100 μL (100 μg/ml), mobile phase 242 μL. The volume of drug injected was 50 μL.

In case of FLUNACTM (150 mg) all peaks were similar to fluconazole bulk drug which were shown in Figure 3 and 4. An unknown peak was detected in both fluconazole bulk drug and FLUNACTM (150 mg). Impurity B and Impurity C were not detected in both fluconazole bulk drug and FLUNACTM (150 mg). Unknown impurity showed the highest amount (0.271%) among all the impurities. The total amount of these impurities in fluconazole bulk drug was 0.368% and in FLUNACTM (150 mg) capsule was 0.392% shown in Table 1. Only 0.024% impurity was increased during the production of capsule.

Table 1: Percentage of impurities of fluconazole present in bulk drug and capsule FLUNACTM

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Impurities</th>
<th>Retention time (min)</th>
<th>Present (%)</th>
<th>Bulk drug*</th>
<th>Cap. FLUNACTM (150 mg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impurity A</td>
<td>7.3</td>
<td>0.106</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown impurity</td>
<td>8.5</td>
<td>0.262</td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>impurities</td>
<td></td>
<td>0.368</td>
<td>0.392</td>
<td></td>
</tr>
</tbody>
</table>

*Data are mean of three samples
The International Conference on Harmonization (ICH) has published guidelines on impurities in new drug substances, products and residual solvents. According to ICH guidelines on impurities in drug products, identification of impurities below the 0.1% level is not considered to be necessary unless the potential impurities are expected to be unusually potent or toxic14. The maximum daily dose qualification threshold is considered to be less than 1 mg/day.

CONCLUSION

The amount of impurities in finished product (Cap. FLUNACTM) was less than 1% which is acceptable.

ACKNOWLEDGEMENT

The authors are thanks full to Mr. Mohammed Yusuf, Director (Technical), Khwaja Yunus Ali Medical College Hospital, Enayetpur, Sirajgonj, Bangladesh.
REFERENCES

