Controlling vector-borne health issues and in-vitro effects of Nanoemulsion of essential Oils: A Review

Authors

  • Anupam Kumar Pal Research Scholar, University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India
  • Nisha Sharma Associate Professor,University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India

DOI:

https://doi.org/10.22270/ajprd.v8i5.824

Keywords:

Nanoemulsion; essential oils; vector control; infectious diseases, insecticidal.

Abstract

Controlling the parasitic and infectious diseases is a permanent health issue worldwide, requiring innovative methods for the prevention & treatment of illness triggered by parasites. Controlling vector and its intermediate hosts is an effective method for anticipation of human and animal’s diseases. It is essential to have bioactive components that act competently on the agents which produce the illnesses. Synthetic agents have strong surplus effects in humans & other animals, and they cause biological toxicity, affecting animals, plants and disturbing the local environment. Many studies have reported the effect of the Essential Oils (EOs). Essential Oils extracted from the medicinal plants are generally used as insect repellents worldwide. They are very safe and favorable to the environment with minimum ill-effects on animals and public health. It helps to control the vectors and also applicable against pathogens. Commonly Essential Oils easily degrade and cause less environmental pollution. Problems associated to solubility as well as stability lead to the improvement of effective carriers for formulations containing Essential Oils that is nanoemulsion. Nanoemulsion is a colloidal dispersion system, thermodynamically stable, prepared by two different non-miscible liquids assorted with emulsifying agents such as surfactants and co-surfactants, to form a single phase. Nanoemulsion a novel drug delivery system can be formulated by using two different techniques, the persuasion technique and the brute force technique. This review describes some studies accomplished with nanoemulsions as carriers of Essential Oils that have repellent, larvicidal, acaricidal, insecticidal and antiparasitic activities. Thus it can be used as substitutes in the vector control of parasitic and communicable diseases.

Keywords: Nanoemulsion; essential oils; vector control; infectious diseases, insecticidal.

Downloads

Download data is not yet available.

Author Biographies

Anupam Kumar Pal, Research Scholar, University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India

Research Scholar, University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India

Nisha Sharma, Associate Professor,University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India

Associate Professor, Research Scholar, University Institute of Pharmacy, C.S.J.M. University, Kanpur, U.P, India

References

1. Guenther, E., 1972. The Essential Oils. Krieger Publishing Company, Florida, USA.
2. Hadis M., Lulu M., Mekonnen Y., Asfaw T. Field trials on the repellent activity of four plant products against mainly Mansonia population in Western Ethiopia. Phytother. Res. 2003,17, 202–205.
3. FAO, 1995. Flavours and Fragrances of Plant Origin, Rome.
4. Trongtokit Y., Rongsriyam Y., Komalamisra N., Apiwathnasorn C. Comparative repellency of 38 Essential Oils against mosquito bites. Phytother. Res. 2005, 19, 303–309.
5. Zygadlo JA., Juliani HR. 2003. Recent progress in medicinal plants. In: Majundar DK., Govil JN., Singh VK., Shailaja MS., Gangal SV. (Eds.), Phytochemistry and Pharmacology II, VIII. Studium Press LLC, Texas, pp. 273–281.
6. Urzua A., Santander R., Echeverria J., Cabezas N., Palacios SM., Rossi Y. Insecticide properties of the Essential Oils from Haplopappus foliosus and Bahia ambrosoides against the house fly, Musca domestica L. J. Chil. Chem. Soc. 2010, 55, 392–395.
7. Urzua A., Santander R., Echeverría J., Villalobos C., Palacios, S.M.; Rossi, Y. Insecticidal properties of Peumus boldus Mol. Essential Oil on the house fly, Musca domestica L. Bol. Latinoam Caribe Plantas Med. Aromat. 2010, 9, 465–469.
8. Urzua, A., Di Cosmo D., Echeverría J., Santander R., Palacios SM., Rossi Y. Insecticidal effect of Schinus latifolius Essential Oil on the housefly, Musca domestica L. Bol. Latinoam Caribe Plantas Med. Aromat. 2011, 10, 470–475.
9. Espinoza J., Urzua A., Bardehle L., Quiroz A., Echeverría J., Gonzalez-Teuber M. Antifeedant effects of Essential Oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) Florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae). Molecules. 2018, 23, 1282.
10. Ferhat MA., Meklati BY., Chemat F. Comparison of different isolation methods of Essential Oil from Citrus fruits: Cold pressing, hydrodistillation and microwave dry distillation. Flavour Fragr. J. 2007, 22, 494–504.
11. Kaufmann B., Christen P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurized solvent extraction. Phytochemical. Anal. 2002, 13, 105–113.
12. Brooker M & Kleinig D. Field Guide to the Eucalyptus, Vol. 1. Revised edn. Melbourne and Sydney, South-Eastern Australia, Inkata Press (1990).
13. Batish DR., Singh HP., Kohli RK., & Kaur S. Eucalyptus Essential Oil as a natural pesticide. Forest Ecology and Management. 2008, 256, 2166–2174.
14. Papachristos DP & Stamopoulos D.C. Fumigant toxicity of three Essential Oils on the eggs of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Stored Products Research. 2004, 40, 517–525.
15. Trigg JK. Evaluation of eucalyptus-based repellent against Anopheles spp. in Tanzania. Journal of the American Mosquito Control Association. 1996, 12, 243–246.
16. Kumar P., Mishra S., Malik A & Satya S. Compositional analysis and insecticidal activity of Eucalyptus globules (family: Myrtaceae) Essential Oil against housefly (Musca domestica). Acta Tropica. 2012, 122, 212–218.
17. Figueiredo AC., Barroso JG., Pedro LG., Scheffer JJC. Factors affecting secondary metabolite production in plants: Volatile components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226.
18. Mills C., Cleary BV., Walsh JJ., Gilmer JF. Inhibition of acetylcholinesterase by tea tree oil. J. Pharm. Pharmacol. 2004, 56, 375–379.
19. Priestley CM., Williamson EM., Wafford KA., Sattelle DB. Thymol, a constituent of thyme Essential Oil, is a positive allosteric modulator of human GABA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372.
20. Enan EE. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant Essential Oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321.
21. Munro IC., Ford RA., Kennepohl E., Sprenger JG. Correlation of structural class with no-observed-effect levels: A proposal for establishing a threshold of concern. Food Chemical Toxicology. 1996, 34, 829–867.
22. Smith RL., Cohen SM., Doull J., Feron VJ., Goodman JI., Marnett LJ., Portoghese PS., Waddell WJ., Wagner BM., Hall RL. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: Essential Oils. Food Chemical Toxicology. 2005, 43, 345–363.
23. Monzote L., Alarcón O., Setzer WN. Antiprotozoal activity of Essential Oils. Agric. Conspec. Sci. 2012, 77, 167–175.
24. Ramos-Lopez MA., Sanchez-Mir E., Fresan-Orozco MC., Perez-Ramos J. Antiprotozoa activity of some Essential Oils. J. Med. Plants Res. 2012, 6, 2901–2908.
25. Salager JL., Anton RE., Anderez JM., Aubry JM. Formulation des micro-emulsions par la method HLD. In Techniques de l’Ingenieur, 1st ed. Editions T.I.: Paris, France, 2001, pp. 1–20.
26. Solans C., Izquierdo P., Nolla J., Azemar N., Garcia-Celma MJ. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110.
27. Forgiarini A., Esquena J., Gonzalez C., Solans C. Studies of the relation between phase behavior and emulsification methods with Nanoemulsion formation. In Trends in Colloid and Interface Science XIV; Springer: Berlin/Heidelberg, Germany, 2000; pp. 36–39.
28. Chime SA., Kenechukwu FC., Attama AA. Nanoemulsions—advances in formulation, characterization and applications in drug delivery. In Application of Nanotechnology in Drug Delivery; In Tech Open: London, UK, 2014.
29. Lu WC, Huang DW, Wang CC, Yeh CH, Tsai JC, Huang YT, Li PH. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of food and drug analysis. 2018 Jan 1;26(1):82-9.
30. Galho AR, Cordeiro MF, Ribeiro SA, Marques MS, Antunes MF, Luz DC, Hädrich G, Muccillo-Baisch AL, Barros DM, Lima JV, Dora CL. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology. 2016 Mar 11;27(17):175101.
31. Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S, Li B, Li Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids. 2016 Dec 1;61:662-71.
32. Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. International Journal of Pharmaceutics. 2008 Jan 22;347(1-2):136-43.
33. Craparo EF., Bondi ML., Pitarresi G., Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci. Ther. 2011, 17, 670–677.
34. Sole I., Pey CM., Maestro A., Gonzalez C., Porras M., Solans C. et al. Nanoemulsions prepared by phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci. 2010; 344:417-23.
35. Ravi TPU., Padma T. Nanoemulsions for drug delivery through different routes. Res Biotechnology. 2011; 2:1-13.
36. De Campos VEB., Ricci-Junior E., Mansur CRE. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol. 2012, 12, 2881–2890.
37. Gahruie HH, Ziaee E, Eskandari MH, Hosseini SM. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate polymers. 2017 Jun 15;166:93-103.
38. Wang L., Li X., Zhang G., Dong J., Eastoe J. Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci. 2007, 314, 230–235.
39. Hazra DK. Nano-formulations: High definition liquid engineering of pesticides for nano-formulations: High definition liquid engineering of pesticides for advanced crop protection in agriculture. Adv. Plant. Agric. Res. 2017, 6, 1–2.
40. Mishra P., Balaji APB., Tyagi BK., Mukherjee A., Chandrasekaran N. Nanopesticides: A boon towards the control of dreadful vectors of lymphatic filariasis. In Lymphatic Filariasis; Springer: Singapore, 2018; pp. 247–257.
41. Mishra P., Balaji APB., Mukherjee A., Chandrasekaran N. Bio-based nanoemulsions: An eco-safe approach towards the eco-toxicity problem. In Handbook of Ecomaterials; Springer: Singapore, 2018; pp. 1–23.
42. Sugumar S., Clarke SK., Nirmala MJ., Tyagi BK., Mukherjee A., Chandrasekaran N. Nanoemulsion of Eucalyptus oil and its Larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 2014, 104, 393–402.
43. Ghosh V., Sugumar S., Mukherjee A., Chandrasekaran N. Cinnamon oil Nanoemulsion formulation by ultrasonic emulsification: Investigation of its bactericidal activity. J. Nanosci. Nanotechnol. 2013, 13, 114–122.
44. Chang CL., Kyu Cho I., Li QX. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 2009, 102, 203–209.
45. Duarte JL., Amado JRR., Oliveira AEMFM., Cruz RAS., Ferreira AM., Souto RNP., Falcão DQ., Carvalho JCT., Fernandes CP. Evaluation of Larvicidal activity of a Nanoemulsion of Rosmarinus officinalis Essential Oil. Rev. Bras. Farmacogn. 2015, 25, 189–192.
46. Conti B., Canale A., Bertoli A., Gozzini F., Pistelli L. Essential Oil composition and Larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2010, 107, 1455–1461.
47. Conti B., Canale A., Cioni PL., Flamini G. Repellence of Essential Oils from tropical and Mediterranean Lamiaceae against Sitophilus zeamais. Bull. Insectol. 2010, 63, 197–202.
48. Volpato A., Baretta D., Zortéa T., Campigotto G., Galli GM., Glombowsky P., Santos, RCV., Quatrin PM., Ourique AF., Baldissera MD. Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructure) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J. Asia Pac. Entomol. 2016, 19, 1159–1165.
49. Botas GDS., Cruz RAS., De Almeida FB., Duarte JL., Araújo RS., Souto RNP., Ferreira R., Carvalho JCT., Santos MG., Rocha L et al. Baccharis reticularia DC. and limonene nanoemulsions: Promising Larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 2017, 22, 1990.
50. Balasubramani S., Rajendhiran T., Moola A., Kumari B. Development of Nanoemulsion from Vitex negundo L. Essential Oil and their efficacy of antioxidant, antimicrobial and Larvicidal activities (Aedes aegypti L.). Environ. Sci. Pollut. Res. 2017, 24, 15125–15133.
51. Osanloo M., Amani A., Sereshti H., Abai MR., Esmaeili F., Sedaghat MM. Preparation and optimization Nanoemulsion of tarragon (Artemisia dracunculus) Essential Oil as effective herbal Larvicidal against Anopheles stephensi. Ind. Crops Prod. 2017, 109, 214–219. (a)
52. Osanloo M., Sereshti H., Sedaghat MM., Amani A. Nanoemulsion of dill Essential Oil as a green and potent Larvicidal against Anopheles stephensi. Environ. Sci. Pollut. Res. 2018, 25, 6466–6473.
53. Amer A., Mehlhorn H. Larvicidal effects of various Essential Oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol. Res. 2006, 99, 466–472.
54. Sundararajan B., Moola AK., Vivek K., Kumari BDR. Formulation of Nanoemulsion from leaves Essential Oil of Ocimum basilicum L. and its antibacterial, antioxidant and Larvicidal activities (Culex quinquefasciatus). Microb. Pathog. 2018, 125, 475–485.
55. Ibrahim J., Zaki ZM., Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants, ASEA. Rev. Biodiv. Environ. Conserv. 1998, 6, 1-7.
56. Jaenson TG., Palsson K., Borg-Karlson AK. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119.
57. Park BS., Choi WS., Kim JH., Lee SE. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J. Am. Mosq. Control Assoc. 2005, 21, 80– 83.
58. Yang YC., Lee EH., Lee HS., Lee DK., Ahn YJ. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J. Am. Mosq. Control Assoc. 2004, 20, 146–149.
59. Gillij YG., Gleiser RM., Zygadlo JA., Mosquito repellent activity of Essential Oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507– 2515.
60. Kiran S., Devi P. Evaluation of mosquitocidal activity of Essential Oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol. Res. 2007, 101, 413– 418.
61. Jaenson TG., Palsson K., Borg-Karlson AK. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119.
62. Sukumar K., Perich MJ., Boobar LR. Botanical derivatives in mosquito control: a review. J. Am. Mosq. Control Assoc. 1991, 7, 210–237.
63. Odalo JO., Omolo MO., Malebo H., Angira J., Njeru PM., Ndiege IO., Hassanali A. Repellency of Essential Oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop. 2005, 95, 210–218.
64. Tunón H., Thorsell W., Mikiver A., Malander I., rthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and Essential Oil from flowers of Dianthus caryophyllum. Fitoterapia. 2006, 77, 257– 261.
65. Toloza AC., Zygadlo J., Mougabure Cueto G., Biurrun F., Zerba E., Picollo MI. Fumigant and repellent properties of Essential Oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol. 2006, 43, 889–895.
66. Omolo MO., Okinyo D., Ndiege IO., Lwande W., Hassanali A. Repellency of Essential Oils of some Kenyan plants against Anopheles gambiae. Phytochemistry. 2004, 65, 2797–2802.
67. Ramar M., Manonmani P., Arumugam P., Kannam SK., Erusan RR., Baskaran N., Murugan K. Nano-insecticidal formulations from Essential Oil (Ocimum sanctum) and fabricated in filter paper on adult of Aedes aegypti and Culex quinquefasciatus. J. Entomol. Zool. Stud. 2017, 5, 1769–1774.
68. Sakulku U., Nuchuchua O., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111.
69. Sritabutra D., Soonwera M., Waltanachanobon S., Poungjai S. Evaluation of herbal Essential Oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion. Asian Pac. J. Trop. Biomed. 2011, 1, S124–S128.
70. Nuchuchua O., Sakulku U., Uawongyart N., Puttipipatkhachorn S., Soottitantawat A., Ruktanonchai U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. Aaps Pharmscitech. 2009, 10, 1234.
71. Santos DS., Boito JP., Santos RCV., Quatrin PM., Ourique AF., dos Reis JH., Gebert RR., Glombowsky P., Klauck V., Boligon AA. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Exp. Appl. Acarol. 2017, 73, 129–138.
72. Monteiro IN., dos Santos Monteiro O., Costa-Junior LM., da Silva Lima A., de Aguiar Andrade EH., Maia JGS., Mouchrek Filho VE. Chemical composition and acaricide activity of an Essential Oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2017, 238, 54–57.
73. Galli GM., Volpato V., Santos RCV., Gebert RR., Quatrin P., Ourique AF., Klein B., Wagner R., Tonin AA., Baldissera MD. Effects of Essential Oil of Eucalyptus globulus loaded in nanoemulsions and in nanocapsules on reproduction of cattle tick (Rhipicephalus microplus). Arch. Zootec. 2018, 67, 494–498.
74. Baldissera MD., Da Silva AS., Oliveira CB., Zimmermann CEP., Vaucher RA., Santos RCV., Rech VC., Tonin AA., Giongo JL., Mattos CB. Trypanocidal activity of the Essential Oils in their conventional and nanoemulsion forms: In vitro tests. Exp. Parasitol. 2013, 134, 356–361.
75. Ziaei Hezarjaribi H., Nadeali N., Saeedi M., Soosaraei M., Jorjani ON., Momeni Z., Fakhar M. The effect of lavender Essential Oil and nanoemulsion on Trichomonas vaginalis in vitro. Feyz J. Kashan Univ. Med. Sci. 2017, 21, 326–334.
76. Shokri A., Saeedi M., Fakhar M., Morteza-Semnani K., Keighobadi M., Teshnizi SH., Kelidari HR., Sadjadi S. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis Essential Oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER). Iran. J. Parasitol. 2017, 12, 622–631.
77. Bouyahya A., Et-Touys A., Bakri Y., Talbaui A., Fellah H., Abrini J., Dakka N. Chemical composition of Mentha pulegium and Rosmarinus officinalis Essential Oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49.
78. Moazeni M., Borji H., Darbandi MS., Saharkhiz MJ. In vitro and in vivo antihydatid activity of a nano emulsion of Zataria multiflora Essential Oil. Res. Vet. Sci. 2017, 114, 308–312.
79. Mahmoudvand H., Mirbadie SR., Sadooghian S., Harandi MF., Jahanbakhsh S., Saedi Dezaki E. Chemical composition and scolicidal activity of Zataria multiflora Boiss Essential Oil. J. Essent. Oil Res. 2017, 29, 42–47.
80. Moazeni M., Larki S., Saharkhiz MJ., Oryan A., Lari MA., Alavi AM. Efficacy of the aromatic water of Zataria multiflora on hydatid cysts: An In vivo study. Antimicrob. Agents Chemother. 2014, 58, 6003–6008.
81. Elissondo MC., Albani CM., Gende L., Eguaras M., Denegri G. Efficacy of thymol against Echinococcus granulosus protoscoleces. Parasitol. Int. 2008, 57, 185–190.
82. Yones DA., Taher GA., Ibraheim ZZ. In vitro effects of some herbs used in Egyptian traditional medicine on viability of protoscolices of hydatid cysts. Korean J. Parasitol. 2011, 49, 255
83. Elissondo MC., Pensel PE., Denegri GM. Could thymol have effectiveness on scolices and germinal layer of hydatid cysts? Acta Trop. 2013, 125, 251–257.
84. Schummer J. Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics. 2004, 59, 425–465.
85. Choi H., Mody CCM. The long history of molecular electronics: Microelectronics origins of nanotechnology. Soc. Stud. Sci. 2009, 39, 11–50.
86. Tripathi AK., Upadhyay S., Bhuiyan M., Bhattacharya PR. A review on prospects of Essential Oils as biopesticide in insect-pest management. J. Pharmacogn. Phyther. 2009, 1, 52–63.
87. Meira CS., Menezes LRA., dos Santos TB., Macedo TS., Fontes JEN., Costa EV., Pinheiro MLB., da Silva TB., Teixeira Guimarães E., Soares MBP. Chemical composition and antiparasitic activity of Essential Oils from leaves of Guatteria friesiana and Guatteria pogonopus (Annonaceae). J. Essent. Oil Res. 2017, 29, 156–162.
88. Dos Santos Sales V., Monteiro ÁB., de Araújo Delmondes G., do Nascimento EP. Antiparasitic activity and Essential Oil chemical analysis of the Piper tuberculatum Jacq fruit. Iran. J. Pharm. Res. IJPR 2018, 17, 268–275.

Published

2020-10-15

How to Cite

Pal, A. K., & Sharma, N. (2020). Controlling vector-borne health issues and in-vitro effects of Nanoemulsion of essential Oils: A Review. Asian Journal of Pharmaceutical Research and Development, 8(5), 150–157. https://doi.org/10.22270/ajprd.v8i5.824