Pharmaceutical Considerations of Nasal In-Situ Gel As A Drug Delivery System

Authors

  • Upasana Khatri Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India
  • Sunil Saini Jai Narayan Vyas University, Pharmacy Wing, Jodhpur (Raj.), India
  • Meenakshi Bharkatiya Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India

DOI:

https://doi.org/10.22270/ajprd.v9i3.950

Keywords:

Nasal In-situ Gel, Nasal formulation, Sustain drug delivery, Mucoadhesive Drug Delivery System Gelation, thermo-sensitive systems; ion-sensitive systems; pH-sensitive systems; Evaluation

Abstract

In situ gelling drug delivery systems have gained enormous attention over the last decade. They are in a sol-state before administration, and they are capable of forming gels in response to different endogenous stimuli, such as temperature increase, pH change and the presence of ions. Such systems can be administered through different routes, to achieve local or systemic drug delivery and can also be successfully used as vehicles for drug-loaded nano- and microparticles. Natural, synthetic and/or semi-synthetic polymers with in situ gelling behaviour can be used alone, or in combination, for the preparation of such systems; the association with mucoadhesive polymers is highly desirable in order to further prolong the residence time at the site of action/absorption. Nasal drug delivery is a better alternative of oral and parental route due to high permeability of Nasal epithelium, rapid drug absorption, avoid Hepatic first pass metabolism, increased bioavailability of drug, minimized local and systemic side effects, Low dose required, Direct transport into systemic circulation and CNS is also possible (passing blood brain barrier), Improved patient compliance, Self-Medication is Possible, prevent Gastro intestinal tract Ulceration. Recently, it has been shown that many drugs have better bioavailability by nasal route than the oral route. Thus, this review focuses on nasal drug delivery, various aspects of nasal anatomy and physiology, nasal absorption mechanism, advantages & disadvantage composition of in situ gel, application and In-situ gels evaluations.

 

Downloads

Download data is not yet available.

Author Biographies

Upasana Khatri, Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India

Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India

Sunil Saini, Jai Narayan Vyas University, Pharmacy Wing, Jodhpur (Raj.), India

Jai Narayan Vyas University, Pharmacy Wing, Jodhpur (Raj.), India

Meenakshi Bharkatiya, Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India

Faculty of Pharmacy, BN Institute of Pharmaceutical Science, BN University, Udaipur (Raj.), India

References

1. Ajazuddin, Alexander A, Khan J, Giri TK, Tripathi DK, Saraf S, Saraf S. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert opinion on drug delivery. 2012 1; 9(12):1573-92
2. Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 58(2):409-26
3. Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA. Non-invasive strategies for targeting the posterior segment of eye. International journal of pharmaceutics. 2017; 530(1-2):326-45.
4. Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug discovery today. 2016; 21(1):157-66.
5. Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? Journal of Pharmacy & Pharmaceutical Sciences. 2009; 12(3):288-311..
6. Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. European Journal of Pharmaceutics and Biopharmaceutics. 2014; 88(1):8-27.
7. Aderibigbe BA. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics. 2018 Jun;10(2):40
8. Kaur P, Garg T, Rath G, Goyal AK. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artificial cells, nanomedicine, and biotechnology. 2016; 44(4):1167-76.
9. Cao SL, Ren XW, Zhang QZ, Chen E, Xu F, Chen J, Liu LC, Jiang XG. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. International journal of pharmaceutics. 2009; 365(1-2):109-15.
1. 10.Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics. 2020; 12(9):859.
10. Dukovski BJ, Plantic I, Cuncic I, Krtalic I, Juretic M, Pepic I, Lovric J, Hafner A. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. International journal of pharmaceutics. 2017; 533(2):480-7.
11. Altuntaş E, Yener G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017; 18(7):2673-82.
12. Pandey P, Cabot PJ, Wallwork B, Panizza BJ, Parekh HS. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels-A platform for therapeutic delivery to mucosal sinus tissue. European Journal of Pharmaceutical Sciences. 2017; 96:499-507.
13. Sonje AG, Mahajan HS. Nasal inserts containing ondansetron hydrochloride based on Chitosan–gellan gum polyelectrolyte complex: In vitro–in vivo studies. Materials Science and Engineering: C. 2016; 64:329-35.
14. Wavikar P, Pai R, Vavia P. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: enhanced brain distribution and pharmacodynamics. Journal of pharmaceutical sciences. 2017; 106(12):3613-22.
15. Ved PM, Kim K. Poly (ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. International journal of pharmaceutics. 2011; 411(1-2):1-9.
16. Upasana K, Rathore KS, Saini S, Meenakshi B. Formulation and Evaluation of Ketorolac Tromethamine using 3 2 Factorial Design. EVALUATION. 2020; 1:1-5.
17. Upadhyay S, Parikh A, Joshi P, Upadhyay UM, Chotai NP. Intranasal drug delivery system-A glimpse to become maestro. Journal of applied pharmaceutical science. 2011; 1(03):34-44.
18. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. Libros Digitales-Pharmaceutical Press; 2009.
19. Nimi TN, Manohar DR. An Overview on In-Situ Nasal Gel for Drug Delivery. Journal of Pharmaceutical Sciences and Research. 2019; 11(7):2585-9.
20. Lee JS, Cha DS, Park HJ. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. Journal of agricultural and food chemistry. 2004; 52(24):7300-5.
21. Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. International journal of pharmaceutics. 1996; 127(2):115-33.
22. Illum L. Nasal drug delivery: new developments and strategies. Drug discovery today. 2002; 7(23):1184-9.
23. Vibha B. In-situ gel nasal drug delivery system-a review. International Journal of Pharma Sciences. 2014; 4(3):577-80.
24. Dey S, Mahanti B, Mazumder B, Malgope A, Dasgupta S. Pelagia Research Library.
25. HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. International Journal of PharmTech Research. 2010; 2(2):1398-408.
26. Jadhav AJ, Gondkar SB, Ravindra BS. A Review on nasal drug delivery system. World journal of pharmacy and pharmaceutical sciences,(WJPPS). 2014; 3(8):231-54.
27. Devasani SR, Dev A, Rathod S, Deshmukh G. An overview of in situ gelling systems. PharmaceutBiologEvaluat. 2016; 3(1):60-9.
28. Nandgude T, Thube R, Jaiswal N, Deshmukh P, Chatap V, Hire N. Formulation and evaluation of pH induced in-situ nasal gel of salbutamol sulphate. International journal of pharmaceutical sciences and nanotechnology. 2008; 1(2):177-83.
29. Prajapati N, Goyal A. A Review: Thermoreversible Mucoadhesive In-Situ Gel. International Journal of Innovative Drug Discovery. 2013; 3(2):67-84..
30. Panchal DR, Patil UL, Bhimani BV, Daslaniya DJ, Patel GV. Nasal in-situ Gel: A novel Drug Delivery System. International Journal for Pharmaceutical Research Scholars, 457-472, 1(2), 2012.
31. Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017; 3(8):e00390.
32. Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Scientia pharmaceutica. 2010; 78(4):959-76.
33. Kouchak M. In situ gelling systems for drug delivery. Jundishapur journal of natural pharmaceutical products. 2014 Aug;9(3).
34. Hiremath SR, editor. Textbook of Industrial Pharmacy: Drug Delivery Systems, and Cosmetic and Herbal Drug Technology. Orient Longman Private; 2008.
35. Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug delivery. 2014; 21(1):62-73.
36. Jadhav AJ, Gondkar SB, Ravindra BS. A Review on nasal drug delivery system. World journal of pharmacy and pharmaceutical sciences,(WJPPS). 2014; 3(8):231-54.
37. Kute JU, Darekar AB, Saudagar RB. A Review: In-Situ Gel-Novel Approach for Nasal Delivery. World journal of pharmacy and pharmaceutical sciences. 2013;3(1):187-203.
38. Kuckling D, Adler HJ, Arndt KF, Ling L, Habicher WD. Temperature and pH dependent solubility of novel poly (N‐isopropylacrylamide)‐copolymers. Macromolecular Chemistry and Physics. 2000; 201(2):273-80.
39. Shaikh RG, Shah SV, Patel KN, Patel PA. A Review on Polymers used in In-Situ gel drug delivery system. International Journal for Pharmaceutical Research Scholars (IJPRS). 2012;1(2):17-29.
40. Raschip IE, Hitruc EG, Vasile C. Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization. High Performance Polymers. 2011; 23(3):219-29.
41. Gaikwad V. Formulation and evaluation of In-Situ gel of metoprolol tartrate for nasal delivery. J Pharm Res. 2010; 3(4):788-93.
42. Rokade M, Tambe B, Ruparel M. In situ gel-sustained nasal drug delivery. International Journal of Pharmaceutical Sciences and Research. 2015; 6(12):4958.
43. Choi HG, Oh YK, Kim CK. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: enhanced bioavailability. International journal of pharmaceutics. 1998; 165(1):23-32.
44. Bechgaard E, Nielsen A. Bioavailability of bromhexine tablets and preliminary pharmacokinetics in humans. Biopharmaceutics & drug disposition. 1982 Oct; 3(4):337-44.
45. Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. International journal of pharmaceutics. 1996; 127(2):115-33.
46. Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, El-Kattan A, Troutman MD. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. Journal of medicinal chemistry. 2010; 53(3):1098-108.

Published

2021-06-15

How to Cite

Khatri, U., Saini, S., & Bharkatiya, M. (2021). Pharmaceutical Considerations of Nasal In-Situ Gel As A Drug Delivery System. Asian Journal of Pharmaceutical Research and Development, 9(3), 94–103. https://doi.org/10.22270/ajprd.v9i3.950