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A B S T R A C T 
 

Objectives: Acute lung injury is commonly found in patients with insecticide poisoning and the pathogenesis is related to 
oxidative stress. Ginsenoside Rg3, one of the main constituents of Panax ginseng C.A. Meyer, shows an anti-oxidative activity. 

The aim of this study was to evaluate whether ginsenoside Rg3 can alleviate lung injury induced by rotenone in mice.  

Methods: C57BL/6J male mice were divided into five groups (n=11). The mice in ginsenoside Rg3 groups were treated with 
ginsenoside Rg3 at dose of 5, 10 or 20 mg/kg. Except for the control group, mice were challenged intragastrically with rotenone 
at dose of 30 mg/kg, once a day for 6 weeks. Subsequently, the lung tissues of mice were collected. The effect of ginsenoside 
Rg3 on rotenone-induced lung injury was observed by hematoxylin and eosin staining. The oxidative stress in lung tissues were 

also examined.  
Results: Rotenone induced substantial hemorrhage, alveolar wall thickness and neutrophils infiltration. These structural 
damages were attenuated significantly by ginsenoside Rg3 treatment. The lung injury induced by rotenone was associated with 
oxidative stress in lung tissues of mice. Compared with the control group, rotenone exposure resulted in the increase of 

malondialdehyde (MDA), the decreases of the activities of superoxide dismutase (SOD), glutathione peroxidase (GHS-Px), and 
the glutathione (GSH) content. Nevertheless, ginsenoside Rg3 treatment not only reduced MDA production but also increased 
the activities of SOD, GSH-Px, and the content of GSH in lung tissue of mice.  
Conclusion: Taken together, this study demonstrated that ginsenoside Rg3 has potential to ameliorate rotenone-induced lung 

injury and the mechanism of action of ginsenoside Rg3 is mediated by its anti-oxidative properties. 
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INTRODUCTION 

nsecticide abuse causes a serious pollution to the 

environment during agricultural activities. Moreover, 

the data of World Health Organization (WHO) show 

that the insecticide poisoning is the leading cause of suicide 

worldwide 
(1)

. And insecticide poisoning induces more than 

200,000 people’s death every year 
(2)

. This severe 

insecticide poisoning causes a damage to organs of human 

body. The symptoms of insecticide poisoning are coma, 

renal injury, acute lung injury (ALI), and respiratory failure 

(3)
. ALI, initial state of acute respiratory distress syndrome 

(ARDS), presents mainly with acute respiratory 

insufficiency, which is implicated in alveolar epithelial 

injury and capillary endothelial cell injury. Patients with 

ALI/ARDS occupy for 10% in intensive care unit (ICU) 

and 4% in total inpatients. It is the main reason of mortality 

in critically ill patients. Generally, the mortality of patients 

with ALI is up to 60%, which is a major medical issue to be 

resolved so far 
(4)

.  
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Rotenone is used commonly as an insecticide in agriculture. 

It has the effect of inhibiting mitochondrial complex I 

which is an important metabolic enzyme involved in redox 

reactions 
(5)

. The inhibition of mitochondrial complex I 

leads to mitochondrial dysfunction and trigger oxidative 

stress occurrence 
(6-7)

. In animal experiments, many reports 

demonstrated that lung injury of rat were induced by an 

exposure of rotenone 
(8-9)

.  Previous study shows that 

oxidative stress is a key contributing factor for the lung 

injury and the impairment of lung function 
(10)

. Meanwhile, 

reactive oxygen species-induced oxidative stress also plays 

an important role in the pathogenesis of respiratory diseases 
(11)

. Recently, researches demonstrate that using 

antioxidants against oxidative stress reduces the airway 

inflammation in animal models of asthma 
(12)

. 

Epigallocatechin-3-gallate (EGCG), a catechin in green tea, 

shows an antioxidant activity and therefore attenuates lung 

injury
 (13)

. Thus, reducing oxidative stress may be an 

effective strategy to against insecticide poisoning-induced 

lung injury. 

Ginsenosides are the compounds extracted from Panax 

ginseng C.A. Meyer. Up to date, more than 30 ginsenosides 

including Rg3, Rg2, Re, and Rh2 were separated 
(14)

. 

Ginsenoside Rg3 is a tetracyclic triterpenoid saponin. 

Previous studies show that ginsenoside Rg3 possesses a 

good many of pharmacological activities, such as 

antioxidant 
(15)

, anticancer 
(16)

, cardiovascular protection
 (17)

, 

immune improvement 
(18)

, anti-inflammation 
(19)

, and anti-

aging effects 
(20)

. Ginsenoside Rg3 alleviates the 

dopaminergic nerve injury in Parkinson’s disease mice 

through its antioxidant effects 
(21-22)

. Ginsenoside Rg3 exerts 

an antioxidant activity and then ameliorates myocardial 

ischemia-reperfusion injury in rats 
(23)

. This study aims to 

investigate whether ginsenoside Rg3 can ameliorate lung 

injury induced by rotenone in mice. 

MATERIALS AND METHODS 

Chemicals and Reagents 

Rotenone was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Ginsenoside Rg3 was provided by Dalian 

Fusheng Natural Medicine Development Co., Ltd. (Dalian, 

China). Carboxymethycellulose sodium was purchased 

from Guangfu Fine Chemical Company (Tianjin, China). 

Malondialdehyde (MDA) kit (Lot. 20200508), superoxide 

dismutase (SOD) kit (Lot. 20200508), glutathione (GSH) 

kit (Lot. 20200416), and glutathione peroxidase (GHS-Px) 

kit (Lot. 20200416) were purchased from Nanjing 

Jiancheng Bioengineering Institute (Nanjing, China). 

Animals 
C57BL/6J male mice (18 - 22 g) were from Jinan Pengyue 

Experimental Animal Breeding Company (Jinan, China). 

The animals were housed in a specific pathogen‐free 

conditions and temperature‐controlled facility with a 12‐hr 

light/dark cycle, and had ad libitum access to a standard 

animal diet. All procedures were performed in accordance 

with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals (Publication 86–23, revised 

in 1986), and the protocols were approved by the Ethics 

Committee of Yantai University (No. 58-ECYU-19). 

Experimental Design 

Animals were randomly divided into five groups (n=11) 

including the control, model, and ginsenoside Rg3 (5, 10, 

and 20 mg/kg) groups. Rotenone and ginsenoside Rg3 were 

dissolved in 0.5% carboxymethycellulose sodium. Mice in 

control and model groups were administered 

intragastrically with 0.5% carboxymethycellulose sodium. 

While mice in ginsenoside Rg3 groups were treated 

intragastrically with ginsenoside Rg3 at doses of 5, 10, or 

20 mg/kg. Two hours later, mice in the control group were 

intragastrically with 0.5% carboxymethycellulose sodium 

again. Mice in the other groups were intragastrically 

challenged with rotenone (30 mg/kg) to induce the lung 

injury model. The treatment with ginsenoside Rg3 and the 

challenge with rotenone were performed once a day for 6 

weeks. 

Histomorphology 

Mice were anesthetized with ketamine (90 mg/kg) and 

xylazine (5 mg/kg). The lung tissues were washed with 

0.9% saline and then they were fixed with 4% 

paraformaldehyde. After dehydrated and embedded, the 

lung tissues were consecutively cut into 4-μm thick sections 

for hematoxylin and eosin (H&E) staining. The 

pathological changes were evaluated by three pathologists 

who were blinded to the design with an inverted 

microscope (IX71, Olympus, Japan). The lung injury was 

detected by Smith scoring criteria: pulmonary hyaline 

membrane formation, alveolar cavity enlargement, alveolar 

wall thickening, hemorrhage, necrosis, and inflammatory 

cell infiltration. The severity of lung injury was graded 

from 0 to 4.  

Oxidative Stress Measurement 

Oxidative stress indicators in the lung tissues of mice, such 

as MDA, SOD, GSH, and GHS-Px, were assayed according 

to the manufacturer’s instructions. Briefly, the lung tissues 

from eight mice in each group were weighed and 

homogenized in phosphate-buffered saline at a ratio of 1:10 

(weight to volume). The homogenates were centrifuged at 

16, 000 g at 4 ℃ for 10 min. The supernatant was used to 

measure oxidative stress indicators. Data were expressed as 

the absorbance after normalization by the protein content. 

Statistical Analysis 

Data are presented as the Mean ± SD. Experimental data 

were analyzed by SPSS 19.0 statistical analysis (IBM 

Corporation, Armonk, NY, USA). Differences among 

multiple groups were analyzed by One-way ANOVA 

followed by Fisher’s LSD test. A p-value < 0.05 was 

considered to indicate a significant difference. 

RESULTS 

The effect of ginsenoside Rg3 on rotenone-induced lung 

injury in mice 

As shown in Fig. 1, the pathological section of lung tissues 

in the control group demonstrated that the bronchial 

epithelial structure was complete, the structure of epithelial 

cells was normal and arranged tightly, and the alveolar 

structure was clear. Furthermore, there was no obvious 

thickness of the alveolar wall and inflammation in the 

control group. However, substantial hemorrhage, alveolar 

wall thickness, and neutrophils infiltration were observed in 
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the model group. Treatment with ginsenoside Rg3 

alleviated the rotenone-induced lung injury. Especially, 

there were only slight alveolar epithelial cell hyperplasia 

and alveolar septal thickness in the lungs of the mice of 

ginsenoside Rg3 at dose of 20 mg/kg group. The score of 

lung injury was shown in Fig. 2. Compared with the control 

group, the score of lung injury in the model group increased 

significantly (p<0.01). However, treatment with 

ginsenoside Rg3 at dose of 5, 10, and 20 mg/kg decreased 

the score of lung injury when compared with that of the 

model group (p<0.01). These results demonstrated that 

ginsenoside Rg3 had a property to alleviate the lung injury 

induced by rotenone in mice. 

 

 

Fig. 1. The effect of ginsenoside Rg3 on rotenone-induced lung injury in mice. Lung histopathology of mice stained with H＆E (n=3). A, Control; B, 

Model; C, Ginsenoside Rg3 5 mg/kg; D, Ginsenoside Rg3 10 mg/kg; E, Ginsenoside Rg3 20 mg/kg, (×100). F, Control; G, Model; H, Ginsenoside Rg3 5 

mg/kg; I, Ginsenoside Rg3 10 mg/kg; J, Ginsenoside Rg3 20 mg/kg, (×400). Red arrowheads indicate hemorrhage, yellow arrowheads indicate alveolar wall 
thickening and alveolar epithelial cell hyperplasia, black arrowheads indicate inflammatory cell infiltration. 

 

Fig. 2. The effect of ginsenoside Rg3 on rotenone-induced lung injury in mice. The score of lung injury. Data were expressed as the Mean ± SD (n = 3). 

Statistical analyses were performed using One-way ANOVA followed by Fisher’s LSD test. ##p<0.01 compared with the control group; **p<0.01compared 
with the model group. 

The effect of ginsenoside Rg3 on SOD activity in the 

lung tissues 

SOD is an important antioxidant enzyme and presents a 

property to against oxidative stress. As shown in Fig. 3, 

the SOD activity of model group was lower than that of 

the control group (p<0.01). However, treatment with 
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ginsenoside Rg3 at dose of 10 and 20 mg/kg markedly 

increased the SOD activity in the lung tissues of mice 

(p<0.05 or 0.01). 

 

 

Fig. 3. The effect of ginsenoside Rg3 on SOD activity in the lung tissues. Bar graphs of SOD activity in lung tissue. Data were expressed as the Mean ± 

SD (n = 8). Statistical analyses were performed using One-way ANOVA followed by Fisher’s LSD test. ##p<0.01 compared with the control group; 
*p<0.05, **p<0.01 compared with the model group. 

The effect of ginsenoside Rg3 on GSH-Px activity and 

GSH content in the lung tissues 

In Fig. 4, GSH-Px activity of the model group decreased 

significantly when compared with the control group 

(p<0.01). Ginsenoside Rg3 augmented the GSH-Px activity 

(p< 0.05 or p< 0.01). Consistently, GSH in the lung tissues 

of model group was also decreased when compared with 

the control group (p<0.01, Fig.5). Treatment with 

ginsenoside Rg3 at dose of 5, 10 and 20 mg/kg increased 

the GSH content in the lung tissues (p<0.05 or p< 0.01). 

  

 

Fig. 4. The effect of ginsenoside Rg3 on GSH-Px activity in the lung tissues. Bar graphs of GSH-Px activity in lung tissue. Data were expressed as the 

Mean ± SD (n = 8). Statistical analyses were performed using One-way ANOVA followed by Fisher’s LSD test. ##p<0.01 compared with the control group; 
*p<0.05, **p<0.01 compared with the model group. 

 



Tian et al                                                                       Asian  Journal of Pharmaceutical Research and Development. 2021; 9(6): 01-07 

ISSN: 2320-4850                                                                                        [2]                                                                        CODEN (USA): AJPRHS 

Fig. 5. The effect of ginsenoside Rg3 on GSH content in the lung tissues. Bar graphs of GSH content in lung tissue. Data were expressed as the Mean ± 

SD (n = 8). Statistical analyses were performed using One-way ANOVA followed by Fisher’s LSD test. ##p<0.01 compared with the control group; 
*p<0.05, **p<0.01 compared with the model group. 

The effect of ginsenoside Rg3 on MDA content in the 

lung tissues 

MDA is a parameter reflecting the degree of lipid 

peroxidation. As shown in Fig. 6, there was an increase of 

MDA in the lung tissues of the mice of the model group 

(p<0.01). Compared with the model group, the MDA 

content in ginsenoside Rg3 groups was decreased 

significantly (p<0.01). The results indicated that 

ginsenoside Rg3 alleviates rotenone-induced lung injury in 

mice by its anti-oxidative properties. 

 

 

Fig. 6. The effect of ginsenoside Rg3 on MDA content in the lung tissues. Bar graphs of MDA content in lung tissue. Data were expressed as the Mean ± 

SD (n = 8). Statistical analyses were performed using One-way ANOVA followed by Fisher’s LSD test. ##p<0.01 compared with the control group; 
**p<0.01 compared with the model group. 

DISCUSSION 
In this study, rotenone exposure caused a severe lung injury 

and an oxidative stress of lung in mice. However, 

ginsenoside Rg3 alleviated the lung injury induced by 

rotenone. Further experiments demonstrated that the 

mechanism of action of ginsenoside Rg3 is mediated by its 

anti-oxidative properties. 

Insecticides, such as rotenone, omethoate, methyl parathion 

and dichlorvos, can cause oxidative stress and severe lung 

damage 
(24-26)

. Researches have demonstrated that exposure 

of insecticides for long time caused pulmonary impairments 

in mice and rabbits 
(27)

. Besides, oxidative stress and 

inflammation in lung were major features in the 

insecticides-challenged rats 
(28)

. Rotenone is mainly 

extracted from the roots and stems of Lonchocarpus and 

Derris species 
(29)

. It is a commonly used insecticide in 

agriculture. Previous studies indicated that rotenone could 

cause a mitochondrial dysfunction, which is implicated in 

the inhibition of mitochondrial electron transport chain 

complex Ⅰ 
(30)

. Therefore, the leak of electrons from 

mitochondria will react with oxygen and produce reactive 

oxygen species (ROS). ROS leads to the mitochondrial 

disorders, abnormal nucleic acids, protein misfolding, and 

disorders of lipid metabolism. Previous study showed that 

rotenone caused the injury of lung in mouse models 
(31)

. In 

this study, histopathology evaluation was performed to 

determine the lung injury in the rotenone-challenged mice. 

The results showed that rotenone exposure induced a severe 

damage in lung tissue of mice, including hemorrhage and 

alveolar wall thickness. However, ginsenoside Rg3 

treatment alleviated rotenone-induced lung injury in mice. 

These findings demonstrated that ginsenoside Rg3 can 

alleviates rotenone-induced lung injury in mice. 

The molecular mechanisms of insecticides-induced lung 

injury are complex and diverse. But the main pathological 

mechanisms include inflammation, oxidative stress, and 

apoptosis 
(28,32)

. Accordingly, rotenone-induced lung injury 

was implicated in the increase of ROS under the condition 

of oxidative stress 
(4-5)

 Although lung has its antioxidant 

system, excessive ROS will result in the damage of 

epithelial cells of lung 
(33-34)

. Moreover, clinical studies also 

demonstrated that ROS plays a vital role in airway tissue 

damage of patients 
(4)

. Emerging evidence suggests that 

oxidative stress was one of the main factors which causes 

lung injury 
(35-37)

. Thus, oxidative stress plays an 

indispensable role in the occurrence and development of 

lung injury induced by rotenone. Therefore, reducing 

oxidative stress and/or increasing antioxidant capacity are 

primary treatment strategies for alleviating rotenone-

induced lung injury. Cells can also prevent oxidative stress-

induced damage by increasing the activities of the 

antioxidant enzymes 
(38)

. The antioxidant enzymes, 

including GSH-Px and SOD, can scavenge ROS and 

therefore prevent the damage of oxidative stress 
(39)

. GSH is 

a cardinal antioxidant in cells and it protects cells against 

exogenous and endogenous toxins, including ROS and 

nitrogen species. Previous study showed that ovalbumin 

inhalation increased the ROS generation in bronchoalveolar 

lavage fluids. But the augment of GSH content significantly 

reduced the lung injury induced by the ovalbumin 

inhalation 
(40)

. MDA is a stable product of lipid 

peroxidation of cells and therefore is the most frequently 

used biomarker of oxidative stress. In this study, rotenone 

exposure resulted in the increase of MDA, the decreases of 

the activities of SOD, GSH-Px, and the GSH content. 

Nevertheless, ginsenoside Rg3 treatment not only reduced 

MDA production but also increased the activities of SOD, 

GSH-Px, and the content of GSH in lung tissue of mice. 

The findings of these experiments demonstrated that the 

mechanism of action of ginsenoside Rg3 is mediated by its 

anti-oxidative properties. 
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There are several limitations in this study. ROS is an 

important indicator of insecticides-caused lung injury. 

However, the levels of ROS were not assayed directly in 

the present study. Additionally, lactate acid level and 

lactate clearance show a direct relationship with mortality 

in patients with lung injury in clinic 
(41)

. Therefore, it will 

be better to detect the lactate acid content in the blood of 

mice with rotenone exposure.   

CONCLUSION 

In summary, this study demonstrates that ginsenoside Rg3 

exerts lung protective effects in rotenone-induced lung 

injury mice. And the mechanism of action of ginsenoside 

Rg3 is mediated by its anti-oxidative properties. 
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