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A B S T R A C T 
 

Around seven species of the genous lolium poisonous grasses belonging to the family Poaceae are mutually grown in corps field 

over the world. In Iraq the prennel ryegrass is locally called “rewatta”.The toxicity of these gasses are related to three chemically 
distinct alkaloids groups; the aminopyrrolizidine; lolines, indole-diterpenes (ergots, loliterms, and paxillines) as well as peramine 
alkaloids mostly concentrated in their seeds although indole-diterpene alkaloids loliterm B and paxilline biosynthesis requires 
endophytes symbiosis. The level of loline alkaloids enhances in both late summer-autumn of the year as well as in the infected 

dry plant materials up to 10 fold. However, paxilline and ergovaline are believed to be the precursor of the most toxic lolium 
species alkaloids, loliterm B, although, indole-diterpene alkaloids paxillines, loliterms and ergovaline are the actual indicators of 
Lolium species. In this review we summarize chemical characteristics, biological and toxicological influences as well as their 
interrelation of the plant of lolium genus. Central as well as peripheral biological/toxicological manifestations are summarized 

for both loline and indole-diterpene alkaloids. Finally, toxic influences of lolium alkaloids are function of their biological 
influences mostly exhibited via resembling molecular mechansims centrally as well as peripherallyare concluded.  
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INTRODUCTION 

 

here are several species of the cool season grass that 

belongs to the genus Lolium which belongs to the 

family Poaceae or Gramineae subfamily Pooideae 

[1], including the perennial ryegrass Lolium perenne 

(meadow fescue) [2-5] or also called Lolium pratense (=F. 

pratensis, meadow fescue) [6-12], the tall fescue 

Loliumarundinaceum (Festuca arundinacea) [7, 13, 14], 

Lolium giganteum (=F. gigantea) [6], Lolium multiflorum, 

Lolium rigidum [15], Loliumcuneatum Nevski [16],and 

Lolium temulentum [15, 17]. In addition, there are hybrids 

of tall fescue and Lolium (tall fescue)or Lolium-Festuca 

[18, 19]. The ryegrasses and broad-leaf fescues of Lolium 

species is distributed Europe and the Mediterranean [1]. In 

the central parts of Asia the herb Lolium cuneatum Nevski 

grows as a poisonous weed within the fields wheat, barley, 

as well as flax [20] whileLolium temulentum L. is one of 

the predominant poisonous plants in Pakistan in the discrete 

Bannu, Khyber Pakhtunkhwa known as darnel or 

poisonryegrass besides, its global abundance in the cereal 

fields of the developing contries where it is considered as 

the worst weed  [21-23]. Remarkably, in Egypt, Lolium 

temulentum (L. cuneatum) is reported to be one of five 

species belongs to the genus Lolium[24] contaminating the 

wheat crop where it is commonly known by the Arabic 

name ―zawan‖, yet, dernel and invraie in other countries 

[25]. Nevertheless, thePerennial Ryegrass Lolium perenneis 

detected in Australia and North America, while, the 

Wimmera ryegrass Lolium rigidum Gaud. is located in 

Australia, South Africa, and, rarely, North America [26]. 

The common names of the Lolium species are listed in table 

(1) while their local names are listed in table (2) adapted 

from (Thomas, et al. 2011) [27]. It has been reported that 

the seed transmitted fungal clavicipitaceous endophytes 

including Neotyphodium or Epichloe¨ (Clavicipitaceae) are 
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associated with plants’ production of nitrogen rich loline [1, 

2, 6, 7, 9, 11, 15, 28-33], ergot lolitrems, peramine 

alkaloids [4, 34-38]  and Festucine [14] that are chemo-

active plant protective mechanism against vertebrate and 

invertebrate [2, 39].  Besides, various endophytes type 

fungus symbiosis including Acremonium coenophialum for 

is reported to be crucial for the biosynthesis of the 

pyrrolizidine as well as pyrrolopyrazine alkaloid in addition 

to their accumulation in the grasses [9, 35, 36] particularly 

peramine in Lolium perenne in symbiosis with N. lolii. [3]. 

however, Neotyphodium uncinatum is involved in the 

production of loline alkaloids in Lolium pretense [11, 12], 

Acremonium coenophialum Morgan-Jones and Gams are 

involved in the production of the considerable quantities of 

loline alkaloids in L. arundinacea Schreb. [40], yet, E. 

uncinata is involved in these alkaloids production in L. 

pratensis [41]. In this context, (Stegelmeier et al,  2013) 

have reported that such endophytes symbiosis with different 

Lolium species is associated with their neurotoxicity 

particularly that of Lolium perenne [26]. Remarkably, 

(Burhan, 1984) have reported the involvement of both 

endophytes symbiosis as well as plant age are related to the 

N-acetyl-loline (NAL) and N-formyl-Loline (NFL) 

production/concentration. In addition, the NAL and NFL 

levels are the highest after 9-11 weeks of seeding which 

declines after clipping (8 weeks after seeding) [42, 43] 

which is greater in the Epichloe¨ Lolium-Festuca hybrids 

[44] as well as other pyrrolizidine alkaloids [18, 19], 

however, pyrrolizidine [18, 45] and ergopeptine [44] 

alkaloids is detected in non-infected(non-Epichloe¨)grasses. 

Moreover, (Liu, et al., 2001) have reported the direct 

involvement of L-homoserine in the loline alkaloids 

biosynthesis pathway in the Acremonium chrysogenum 

fungi [46]. Furthermore, (Craven et al., 2001) have reported 

that the type/amount of loline alkaloids phytosynthesis is 

associated with the genotype of fungus as well as its degree 

of symbiosis with the grass particularly Lolium pratense, 

reporting that the alkaloids level may mount 2% of the 

grass dry weight [8] which is in accordance to (Justus et al., 

1997) who reported the highest level of loline alkaloids in 

the seeds infected with N. uncinatum [10].For example, 

theperamine mean level have been reported to be 26.21  

2.97 g/g dry weight, of considerable toxic lolitrem B 

quantity, hence, exceeding 2 g/g of dry plant weight (the 

toxicity level) in E. festucae var. lolii infected L. perenne 

seeds from New Zealand in late summer, while, their level 

in fresh grass is 24–37% of the dry plant [2] on one 

hand.The loline and other related alkaloids producing 

lolium species-endophytes symbiosis is listed in table (3) 

adapted from (Schardl, 2007) and other reports [1, 5, 6, 8-

10, 13, 15, 17, 30]. 

 
Table 1: common names of the Lolium species [27]. 

 

Species  Common name 

Lolium perenne Perennial ryegrass 

Lolium multiform Italian ryegrass 

Lolium rigidum Annual ryegrass, wimmera ryegrass 

Lolium canariense Canary island ryegrass 

Lolium loliaceum ----------- 

Lolium remotum Hardy ryegrass 

Lolium temulentum Darnel, poisonous ryegrass 

Lolium persicum Persian darnel 

 

Table: 2 local names of the Lolium species [27]. 

 

language Common names of Lolium species 

English  Bearded darnel, Poison darnel, Annual darnel, Red 

darnel, Poison ryegrass, Darnel ryegrass, Ray-grass, 

Tarse, Drake, Drawke, Drunk, Dragge, Study ryle, 
Cheat, Wonwoer, Chess, Virginina oat, Cokil, 

Cockle, Evir.   

Arabic  Zirwan, Samma, Aqoullab, Zawan, Zuwan, 

Shaylam, Suwal, Sikra, Danaqa 

Basque  Iraka 

Breesciano Fraina, Lergheta, Loi 

Breton Draog, Ivre, Pigal, Pilgere’h 

Calabrese Giogghju 

Chinese  Du mai 

Colombia  Ballico  

Czech  Jelik  

Dutch  Dolik, HandsdarivK 

Estonian  Uimastav raihein  

French  Ivraie annuelle, Ivraie enivrante, Herb a couteau, 

Herb d’ivrogne, Zizanie 

German  Taumellolch, Taumel-Raygras 

Hungarian  Konloly  

India  Machni, Mochni, Mostaki 

Italian Loglio del Veleno, Loglio ubriacaute, Zizzania 

Latin  Lolium temulentum 

Morocco  Zwan, Zuwan, Gesmata, I –medhum, Sirkran, Sikra, 

Saylam, Laichour 

Peru  Ballico, Cerisuelo, Sirisuela 

Polish  Kakol, Zycicac roczna 

portuguese Joio 

Spanish  Borrachuela, Cizana commun, Cizana embriagente, 

Cominillo, Joyo, Trigollo, Mala hierba, Rabillo 

South Africa Drabok raaigras, Dronkgras, Drabok  

Swedidh  Darrepe 

Romagnolo  Zizagna, Zizania 

Valencian Brossa  

Zulu Shesi  

Welsh  Efrau, Efryn, Yd meddw, Edrau coliog, Pabi’r 

gwenith, Drewg, Pabi gwenith, Ller, Graban yr 

hwylydd, Lleren 

 

 

Table 3: Lolium species-endophytes  reported symbiosis [1, 5, 6, 8-10, 13, 15, 17, 30, 

31]. 

 

Specie  Endophyte  Country 

Lolium arundinaceum  N. coenophialum  USA 

L. arundinaceum N. coenophialum Morocco  

L. giganteum (L.) S. J. 

Drabyshire 

E. festuca Europe  

L. multiflormLam  N. occultans South Africa 

L. persicum Bioss et 

Hohen 

N. occultans Iran  

L. pretense N. uncinatum Europe  

L. pretense N. siegelii craven et al. Germany  

Lolium sp.  Neotyphodium sp. FaTG-

3 

Tunisia  

L. rigidum Gaud.  N. occultans Egypt  

L. temulentum N. occultans Greece  

 

However, (Blankenship, 2004) have also reported that the 

pyrrolizidine alkaloids such as loline class of these 

alkaloids in Lolium pretense is through ornithine-

homospermidine pathway [4, 47] where spermidine [48]. 

 

LOLINE ALKALOIDS AND THEIR CHEMISTRY: 

 

Globally, pyrrolizidine alkaloids are located in 3% of the 

flowering plants [49]. The level of these alkaloids varies 

with season, where in Germany grass lands it inclines to 

their optimum peak during summer to exceed the toxicity 

threshold in dry grasses (three folds of the fresh grasses), 
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while, remains bellow this threshold in fresh ones 

particularly those of the toxic alkaloids peramine, lolitrem 

B, and ergovaline [2]. Similarly, in Kentucky, USA it has 

been reported that the levels of these alkaloids particularly 

the various loline alkaloids in tall fescue are within the 

range of low (200-300 g/g) during winter then inclines 

gradually during spring to approach their peak level during 

late summer [50] are reported in other studies [51-54]. In 

addition, (Bauer et al., 2018) have reported that 

pyrrolizidine/loline as well as indole-diterpene alkaloids 

such as paxilline and ergot levels are greater (up to ten 

folds) in the dry grasses as compared to an equivalent 

weight of the fresh grasses using immunochemical analysis 

[55].  

(Hartmann, 1999) have classified these alkaloids into five 

classes these are  class I and III which have α,β unsaturated 

necine core structure along with a macrocyclic, diester 

bridge between C9 and C7 including senecionine and 

monocrotaline. Second, Class II which have α,β-

unsaturated core structure along with open chaine diesters 

linked to C9 and C7 comprising triangularine type alkaloid. 

The third, is class IV and V with single ester side chain at 

C9 comprising pyrrolizidines [56] as shown in figure (2). 

Chemically, the core structure of this class pyrrolizidine 

alkaloids is composed of two fused saturated heterocyclic 

pentagonal rings with a nitrogen atom at one of the 

bridgehead with amine group substitution as what is 

identified in the loline alkaloids causing ring staggering 

[26]. In addition, these saturated amino-pyrrolizidine 

alkaloids isolated from Lolium species have exocylic 

oxygen bridge occurs between C2 and C7. These loline 

alkaloids isolated from endophytes infected Lolium perenne 

L., are reported to be in the greatest level in the seeds while 

the lowest in rachis, stem, leaf sheath, and leaf blade, 

nevertheless, the synthesis site is unknown, while, the plant 

age is also involved in these biologically significant 

pyrrolizidine alkaloids levels [9]. The seasonal effect on the 

level of loline alkaloids N-acetylloline (NAL) and N-

formylloline (NFL) is also reported to be enhanced from 

April to be peaked during summer during July up to 1000 

g/g [55, 57] as what is reported for samples from 

Alabama, USA. However, their level is not affected by the 

growth conditions as what is observed for perloline [56, 

57]. Furthermore, plant clipping 6-7 weeks of seeding has 

been reported to bring about enhancement of NAL and NFL 

mean levels [42]. In addition, it is reported that water stress 

as well as temperature dramatically enhanced the level of 

NAL and NFL from 2236 to 11063 g/g within 12 weeks 

at 21/15 C
0
 particularly when tall fescue infected with 

endophytes which is also inclined as the nitrogen or 

phosphorus level inclined [45, 49, 58]. 

In general, loline chemically named hexahydro-N-methyl-

2,4-methano-4H-furo[3,2-b]pyrrol-3-amine is a small size 

molecule a saturated 1-aminopyrrolizidines-type alkaloid 

originally isolated from Loliumcuneatum Nevski with a 

remarkable rigid simple structure of a characteristic polarity 

leading to an extraordinary physicochemical properties [4, 

16, 30, 59, 60]. Structurally, their two fused saturated 

pentagonal rings sharing carbon and nitrogen atoms at their 

fusion ring with an oxygen ether bridge occur at the two 

carbons C2 and C7 (C2–O–C7 bridge) making this tricyclic 

ring system a very stained system [4, 30]. Interestingly, the 

endophyte infecting fungi are responsible for the oxygen 

ether bridge hence, completing the pyrrolizidine ring 

system [1]. Nevertheless, its exo-amino group (–NRR') 

occur at C1 group of different substitutions in various loline 

alkaloids plant secondary metabolite such as formyl, acetyl, 

and methyl groups [4] on its unusual tricyclic strained 

necine ring system (that is of –CH2OR group at C1 

position) [33, 60-64]. There are other 1-aminopyrrolizidine 

alkaloids with α,β-unsaturation besides neither ether bridge 

at C2 and C7 positions nor amine functionalities at C1 

position such as senecionine and retrorsine [65-67].  

Loline alkaloids of exo-1- aminopyrrolizidine-2,7-ether 

nucleus structure are first isolated from tall fescue grasses 

(Lolium species) by (Petroski et al., 1989) who have 

synthesized the other loline alkaloids [40] then are detected 

in other plants although ( Yunusov, Akramov, 1955) have 

reported the isolation of loline alkaloids from the seeds of 

Lolium cuneatum but with an incorrect elucidation of its 

chemical structure [16].The first loline alkaloid temuline, 

later on called norloline, with no N-methyl substitution 

occur during isolation process as reported by (Dannhardt 

and Steindl, 1985) [17], is isolated from Lolium temulentum 

for the first time in 1892 by Hofmeister [17, 33, 68, 69] 

which was reported Longley later on to be the dominant 

alkaloids in this plant [17], while, (Katz, 1949) has reported 

no alkaloids existed in L.temulentum [70]. In fact, 

(Yunusov, Akramov, 1955) have reported is reported to be 

major alkaloid in L. temulentum [17]. However, its N-

methyl derivatives -NHCH3 substituent are in exo position 

of the pyrrolizidine moiety as proposed by (Yates and 

Tookey, 1965) [14]. In addition, the term loline is proposed 

by Yunusov and Akramov who have isolated loline for the 

first time from rye grass,  L. cuneatum Nevski at 1955 then 

its structure is conformed in 1965 and 1972 who conformed 

the existence of pyrrolizidine core of unique ether linkage 

at C2 and C7 [16, 69, 71-73]. Besides, the isolation and 

identification of other loline alkaloids from the same plant 

including norloline, N-acetylloline (or lolinine) [74], N-

acetylnorloline [75] which is available along with other 

loline alkaloids in L arundinancea as a volatile alkaloids 

[31], N-methylloline, N-formylloline [76], N-

formylnorloline [77] are lolines isolated from darnel and 

tall fescue [31, 78]  in addition to N-acetylloline N-oxide 

[77] and a dimeric chlorine containing alkaloid lolidine is 

also isolated as [77, 79, 33] where one loline molecule is 

joined to a saturated pyrrolizidine that exhibit a chlorine at 

C7 and hydroxyl group at C2 instead of the ether bridge as 

reported by others [33, 77, 79, 80]. Moreover, (Yunusov 

and Akramov, 1960) have produced chlorinated and 

hydroxylated compounds without affecting the oxygen 

bridge of the pyrrolizidine which are then selectively 

removed to produce a mixture of N-methylpyrrolizidine 

resulting in endo-N-methyl-1-aminopyrrolizidine structure 

and free pyrrolizidine [81, 82] however, festucine without 

exo-position C1-N-methyl substitution have been isolated 

from Lolium arundinaceum (Schreb.) S.J. Darbyshire [14, 

73].  In addition, the extraordinarily chlorinated alkaloid, 

lolidine is also isolated from the Lolium species [79]. 

Lolidine is structurally hetrogenous dimeric compound 

composed of loline and N-acetylnorloline fraction which is 

always isolated from their alkaloids extract ether fraction 

using chlorine containing solvents in all stages of isolation 

and purification. The chlorine atom in this halogenated in 
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the N-acetylnorloline part located at C6 carbon with contact 

oxygen bridge, yet, its opening in Chlorohydroxyloline and 

lolidinein [80] that occurs in the seeds of Lolium plants in 

the methanolic fraction [83]. In addition, norloline is 

obtained from the chlorine containing fraction of lolidine 

through alkalinization that cause oxygen ether bridge 

formation [83]. Moreover, (Dannhardt and Steindl, 1985) 

have reported the isolation of two major alkaloids loline as 

well as perloline from the caryopses and stem of the aerial 

parts of Lolium temulentum L while no detection of the 

loline demethylation alkaloid, norloline [17]. Nevertheless, 

the loline alkaloids isolated from the seeds of L. 

temulentum are loline chemical metabolic intermediate 

analogues as well as fungal infection final degradation 

products, norloline, loline, 6-methylloline and lolinine 

where the final one is supposed to occur due to norloline N-

methylation as well as acetylation [84-86].  

It is necessary to note that N-formyl loline is a biosynthetic 

analogue of loline while, N-Senecioyl norloline and 

acylnorloline, are loline alkaloids metabolites isolated from 

hours urine which feed on tall fescue grass [1, 87] which 

are reported to exhibit potent DNA binding potential [65, 

66] as well as hepatotoxicity [56]. The Lolium species 

germinated seeds have been reported to exhibit a high level 

of loline alkaloids. In this context, (Yu et al., 1955) have 

reported the isolation of total alkaloids of Lolium cuneatum 

Nevski using chloroform and have been found to constitute 

0.23% of the dry plant weight and are composed of loline, 

nortoline, lolinine (N-acetylloline), N-methylloline, and N-

acetylnorloline while the aqueous fraction of the extract 

contains N-formylloline as it is quaternary base alkaloid. 

Loline constitutes 45% of the chloroform extract while, 

lolinine constitute 41.7% [79]. Thus, N-formylloline, N-

acetylloline, N-methylloline, norloline, N-acetylnofloline 

and N-formylnofloline are isolated from Lolium cuneaturn 

and Loliurn temulentum. Moreover, these alkaloids 

including the two enantiomers of N-formylloline and N-

acetylloline are reported to be existed in the plant parts of 

endophyte-infected tall fescue Lolium pretense, yet, the 

highest concentration is detected in the seeds, while, 1000 

μg/ml concentration is reported in the fungal filtrate. 

Interestingly, (Blankenship, 2004) have reported that the 

biosynthetic final steps of  loline alkaloids follows the 

following order: norloline → loline → methylloline → N-

formylloline while ring C1 amine methylation happens 

before ring cyclization [4].  Nevertherless, the 

pharmacologically interesting new properties of loline 

alkaloids [9] has lead to the successful synthesis of (±)-

loline by (Tufariello et al, 1986) [88] while, N-formylloline 

as well as N-acetylloline have been synthesized from loline 

using ethyl formate at room temperature and acetyl chloride 

in chloroform respectively [9], however, N-acetylloline 

structure have been elucidated by (Bates, Morehead, 1972) 

[72].  Moreover, both of paxilline and ergovaline are 

reported to be the precursors of the indole diterpene 

alkaloid loliterm B as end product obtained from the 

Neotyphodium lolii and Epichloë infected grasses including 

perennial ryegrass, Lolium perenne [3, 89-94]. In England 

immunoassay EIA has demonstrated that the seeds infected 

with endophyte perennial ryegrass contains (3000 μg/kg) 

paxilline [95] while, (3000−5200 μg/kg) for that from 

England and France [96, 97] while, ergovaline level in 

perennial ryegrass seeds from France is 6200 μg/kg [97]. 

Others have been reported that ergovaline level in perennial 

ryegrass dry material from Franse is 2300 μg/kg, yet, 4700 

μg/kg from Czech [97, 98]. However, approximately close 

concentration of paxilline as well as lolitrem B have been 

reported for perennial ryegrass from New Zealand [99, 100] 

in addition to lolitrem B in Germany and other European 

countries [53, 97, 101-103].  

Furthermore, (Vikuk, et al., 2020) have reported that the E. 

festucae var. lolii seeds of L. perenne from New Zealand 

contains peramine, lolitrem B and ergovaline in a season 

dependent concentrations that incline during summer while 

decline during winter. The concentration of peramine is 

found to be within the range above the toxic range 0.04 and 

23.38 g/g dry weight (2.00  0.32 g/g, 6.57  1.09 

g/g and 3.23  0.61 g/g are the mean levels in July, 

August and September respectively) which is above the 

toxic one and half of that reported in Germany while its 

concentration in fresh plant is 13-40% of the dry weight. 

While, the detected level of lolitrem B is within the range 

of 0.07 and 23.81 g/g which is above the toxic one 

particularly during summer. However, paxilline is not 

detected while ergovaline is very low 0.3–0.4 g/g (DW) 

which is bellow the toxicity threshold however, ergovalline 

level reaches its peak in July to be 1.33  0.30 g/g dry 

weight while in the fresh plant is 20-40% of its 

concentration in dry material [2]. Moreover, (Bauer, et al., 

2018) have reported that paxilline congers are the dominant 

lipophilic secondary loline alkaloids metabolites in the 

ethyl acetate extracts of the seeds and the fresh plant of 

perennial ryegrass, L. perenne L. as well as in the seeds of 

the Italian ryegrass L. multiflorum Fabio obtained from 

Germany which are 1’-O-acetylpaxilline and 13-

desoxypaxilline. Besides, the existence of paxilline-like 

indole diterpene and ergot alkaloids in the seeds as well as 

the fresh plant of perennial ryegrass, however, weak 

concentrations, 7.3 μg/kg, of ergot alkaloids is detected in 

the seeds of the Italian ryegrass while, no detection to 

paxilline alkaloid. Remarkably, immunoassay have 

indicated the availability of high concentration of paxillin 

alkaloid, (5400 μg/kg), and ergot alkaloids, (260 μg/kg), in 

the dry matter of perennial ryegrass. Nevertheless, in south 

Germany the level of paxilline is 110 μg/kg in fresh plant 

while 270 μg/kg in dry matter which mostly related 

paxilline-like analogues due to the cross-reactivity to 

paxilline since according to immunoassay paxilline mean 

level of 190 190 μg/kg represent > 3% of the total paxilline 

alkaloids (6800 μg/kg) in perennial ryegrass. In addition, 

the mean level of ergot alkaloids in the seeds and dry matter 

of perennial ryegrass is reported to be 1600 and 180 μg/kg 

ergometrine equivalents, respectively, yet, ergovaline actual 

levels are of 24000−80000 μg/kg and 3000−9000 μg/kg in 

the seeds and plant dry mater that make it the major indole-

diterpene alkaloids. Thus, paxilline as well as its paxilline-

like indole-diterpene analogues levels are good indicators 

for the plant toxicity [55]. The chemical structures of the 

summarized loline alkaloids is illustrated in figure (3). 
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Figure 2: Classes of plants origin pyrrolizidine type alkaloids[56]. 

 

Finally, some authors have reported that there is a relationship between the accumulations of peramine and ergovaline 

through out the year while no correlation between N-acetylloline and N-formylloine accumulation and the accumulation of 

peramine or ergovaline meaning that both N-acetylloline and N-formylloine are not synthesized by the infecting endophytes 

[4]. 

  
Figure 3: Chemical structure of the summerized lipophilic indole-diterpene and hydrophilic loline alkaloids. 
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Loline As Well As Paxilline/Paxilline-Like Diterpene 

Alkaloids Biological Influences and Their Toxicity: 

 

Loline alkaloids particularly temuline from Lolium 

temulentum in darnel beer have been traditionally used as 

sedative for reliveing pain as well as sedative for nervous 

conditions [104]. Nevertheless, it is earlier reported that 

loline alkaloids as well as ergovaline interacts with the 2-

adrenergic, D2 dopamine, or serotonergic receptors in the 

blood vasculatures leading to vasoconstriction besides, 

vasculatures thickening [105, 106], in addition to their 

immunosuppersive influence in murine model [107]. 

However, (Dannhardt, Steindl. 1985) have reported that the 

1-adrenergic, 2-adrenergic, D2 dopamine, cholinergic, 

serotonergic and benzodiazepine receptors bindings in rat 

and calf brains are not interfered by loline dihydrochloride 

as it has no affinity to these receptors [17, 108-112]. 

Whereas, other have suggested various central nervous 

system receptor antagonizing influences particularly the 

dopaminergic receptors [17, 113, 114]. Interestingly, unlike 

ergot alkaloids which are of no influence at concentration 

of 1.9 ppm, anorexic feed as well as prolactin depressing 

influences have been reported to a partially purified of tall 

fescus extract fraction of these pyrrolizidine alkaloids in rat 

model [115, 116]. In addition, (Strickland, et al. 1994) have 

reported a dose dependent prolactin suppression influence 

of loline at elevated concentration of 10
-4

 M via D2 receptor 

agonistic effect in rat model [117]. Nevertheless, at similar 

level other loline derivatives such as N-acetylloline, N-

formylloline and N-methylloline have exploited no 

prolactin inhibition activity in rats [118], particularly, N-

acetylloline and N-formylloline that have no D2 receptor or 

cAMP counteracting effect even at milimolar level [114]. 

Tall fescue extract has been reported to exhibit α2 

adrenergic receptor powerful agonistic influence leading to 

a potent contractility in the cattle’s lateral saphenous veins 

[119] while, N-acetylloline and N-formylloline mixture at 3 

x 10
-5

 M have been reported to cause partial inhibition of 

the norepinephrine mediated vasoconstriction [120]. 

However, N-acetylloline have been also reported to exploit 

briefly lower cow lateral saphenous veins and arteries 

vasoconstrictive effect in hourses [121, 122] indicating 

serotonergic and 2 adrenergic receptor antagonistic 

influences [123]. Nevertheless, N-acetyl loline have been 

reported to elicit in vitro vascular smooth muscle cells at 

lower concentration while, at higher levels of 10
-8

 and 10
-9

 

M have prohibited their growth, yet, at concentration range 

of 10
-8

-10
-11

 M stimulate the growth of the dormant cells in 

bovine models [105]. Meanwhile, it is necessary to note 

that the in vitro tall fescue lolines vascular as well as 

endocrinal influences are exploited only at quietly high 

levels [117, 119, 120]. Moreover, it has been reported that 

these lolium pyrrolizidine alkaloids in excessive dose may 

inhibit thiaminase I enzyme responsible for thiamin 

catabolism through acting as enzyme substrate leading to 

thiamin deficiency in castles [124, 125]. 

Loline dichorohydrate as well as N-benzoyl iodomethylate 

derivatives have been found to decline coronary blood flow 

as well as blood pressure in mammalians such as cats and 

doges. In this context, loline alkaloids are reported to 

exhibit cardiac arrest subsequent to their negative inotropic 

effect at 0.1 and 1 mM concentration, however, cardiac 

arrest in froge model. Where as, at 10 mM level they have 

demonstrated instant cardiac arrest while diastole. In 

addition, intravenous administration of loline 

dihydrochloride at doses of 1-60 mg/Kg have been reported 

to cause dose-dependent reduction of blood pressure as well 

as respiratory deepening for 2-15 minutes [126]. Moreover, 

(Hammouda, et al., 1988) have reported that the loline 

alkaloids of the seeds ethanolic extract of Lolium 

temulentum exploit fast onset/short duration reversible 

cardiac arrest via depressing the predilective inotropic 

rather than the chorotropic function of the atrium in rabbit 

heart model along with very weak antagonistic effect 

against the tone as well as contractility of isolated rabbit 

aortic spiral strip vascular smooth muscle treated with 

epinephrine as compared to loline dihydrochloride which 

lacks such effect despites the later higher adrenaline tissue 

sensitizing influence. Furthermore, against the GIT, they 

have demonstrated very potent muscle tone depression on 

rabbit’s jejunum smooth muscles model greater than their 

effect on their rhythmic contractility. However, on guinea 

pig ilium smooth muscles, the lower concentration of the 

loline alkaloids containing ethanolic extract have found to 

potentiate acetylcholine activity while, opposite activity is 

observed in the higher concentration along with uniform 

histamine effect antagonism at both concentrations 

explained by the total loline alkaloids synergistic 

influences. Meanwhile, loline dihydrochloride has exhibited 

no considerable effect on muscle tone on the same model 

while great enhancement of ilium contractility. However, 

both loline dihydrochloride as well as ethanolic extract total 

loline alkaloids have lacked any considerable influences 

against the tone of smooth muscle. Yet, the extract’s total 

alkaloid have exploited resembling partial antagonistic 

action against Ach and histamine-induced contractions, but, 

loline dihydrochloride has elicited a selective histaminergic 

contraction antagonistic influence in ilium model. 

Moreover, the total alkaloids extract have elicited less Ach 

blood level influencing effect than loline since, the later 

exhibits more potent serum pseudocholine esterase 

inhibitory influence explaining its ability to provoke the 

transmission of partially irreversible neuromuscular 

blocking impulse in a perfused diaphragm rat’s phrenic 

nerve model. On the CNS, the ethanolic extract total loline 

alkaloids have demonstrated CNS depression accompanied 

by hind limbs paralysis as well as ataxia hence, ultimately 

have brought about complete motor incapacitation, total 

skeletal muscle hypotonia along with postural 

reflexes/external stimuli response in mice model which 

have been found to be significantly greater than that to 

loline dihydrochloride. In addition, both ethanolic extract 

alkaloids as well as loline dihydrochloride have exploited 

dose-dependent time prolongation of barbiturate based 

hypnoptic activity [84]. Furthermore, (Putnam, et al, 1991) 

have reported that feeding of pregnant mares on endophytes 

infected Acremonium coenophialum tall fescue containing 

loline alkaloid derivatives 1610 g/g NAL plus NFL as 

well as 0.39 g/g of ergovaline plus ergovalinine has 

caused abortion or after lethality of birth fetus during 

pregnancy, after birth or during lactation in 90% of these 

fetuses. However, this toxic effect is not known whether 

due to a direct or indirect influences on mammalians [58].  
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Remarkably, N-acetylloline has been reported to exploit an 

in vitro mitogenic on the stationary smooth muscles of the 

blood vessels 10–1000 pM concentration while prohibit cell 

growth of others at 100– 1000 pM concentration [105]. In 

addition, (Petroski et al., 1994) have been reported that 

loline alkaloids as well as their semisynthetic derivatives of 

8-12 carbon acyl chain substituting C1 amino group have 

significant antineoplastic influences against solid tumor in 

brine-shrimp model of 0.274 g/ml mean ED50 against 

human lung carcinoma A-549, breast carcinoma MCF-7, 

and colon adenocarcinoma HT-29, yet, through an 

unknown mode of action. However, N-Acyllolines of >12 

carbon length have a non-significant with weak 

cyctotoxicities as what is observed for the parent congener 

loline, yet, those with 12-18 carbon atom length acyl 

substitutions have exploited significant cytotoxic influences 

although much weaker than that of the anticancer drug 

adriamycin. Interestingly, the most active N-acylloline 

congener is N-Oleoylloline which has exhibited some 

degree of selectivity against HT-29 human colon 

adenocarcinoma [127]. Whereas, in vivo studies have 

demonstrated that the metabolism of the naturally occurring 

pyrrolizidine alkaloids including loline alkaloids gives rise 

to non-cytotoxic metabolites that can’t interact with the 

intracellular macromolecules [128].  

Moreover, the Lolium species indole-diterpene neuro-active 

mycotoxin alkaloid, lolitrem B rich in seeds of endophyte-

infected ryegrass seed have been reported to exhibit an anti-

mammalian influences involving neurological symptoms of 

hyperexcitability, muscle tremors and ataxia. Yet, it 

develops clonic seizures then death in sever cases of 

toxicity in male mice model as it has been detected in liver, 

kidney, cerebral cortex and thalamus as they are presumed 

to be its primary site of influence, but not in the cerebellum 

as well as brain stem which also encountered in sheep and 

cattle [95, 129, 130]. It mode of action may involve 

alteration in the metabolic pathways of essential 

neurotransmitters like caticholeamines as well as amino 

acids like tyrosine as their profile have been found to be 

significantly altered with time. Thus, lolitrem B exhibits its 

toxic influence in the CNS via regions specific manner 

particularly in the cerebral cortex that involves the emotion, 

mental and cognition functions of the brain as it accumulate 

in this tissue within a short period of time through 

perturbation of neurotransmitters metabolism leading to 

tremors and behavioral alterations in both high and low 

doses in a dose dependent mode. Lolitrem B, can disturb 

the metabolism of branched amino acids leading to their 

accumulation in the brain, hence, it deregulates the sedative 

neuromodulatory/catecholamine pathways leading to 

enhance its tremorgenic and non-tremorgenic excitatory 

influence in the forebrain [130]. Centrally mediated, 

Loliterm B, prolonged/reversible tremorgenic influence 

have been also reported in sheep and murine models [90, 

131-136] which may have a pharmacological, discovery as 

well as drug  design importance [132]. The mode of action 

of loliterms is reported to undergo structure dependent large 

conductance calcium-activated potassium channels potent 

blockage [90, 137, 138, 139] that maintain its neurological, 

emotional, behavioral as well as motor activity disturbance 

[90, 133, 137] besides, explaining its potential 

pharmacological action [138]. Although others have 

reported that tremorgenicity is indirectly related to the 

blockage of these channels besides, not seldom mechanism 

contributing to its symptoms of toxicity [138]. However, 

their metabolic alteration in vivo declines their activity due 

to the resulted structural alteration as it have observed in 

animal models [137-139]. However, stereochemistry have a 

role in the determining loliterm termjorgenic influence. For 

example, its natural stereoisomer lolitrem F. of A ring of 

alpha-phase is of no such influence [140] Remarkably, 

loliterm B binds to the charybdotoxin binding allosteric site 

located in the pore of the channel [141]. However, due to its 

lipophilicity, large molecular weight and non-volatility, 

lolitrem B tends to accumulate in the fatty tissues including 

the brain tissues [142-144] which is detected in fatty tissues 

of lactating and mature animals [143-147] as in case of 

sheep [142, 143]. Authors have speculated that loliterm as 

well as its biosynthetic intermediates including paxilline 

and terpendole C induce its termorgenic influence via close 

molecular mechanisms in mice model [92, 131]. In 

addition, a contractile tension inducing synergistic 

influence on the sheep distal colon smooth muscle 

longitudinal preparation have been reported for it 

combination with ergotamine leading to diarrhea [148], 

while its combination with ergovaline leads to decline 

bovine milk production [149-151]. In addition, in sheeps its 

GIT influence against duodenum via interfering the 

acetylcholine release [152]. It is reported that interpertoneal 

loliterm B tremorgenic influence lasts longer than other 

indole-diterpene alkaloids like aflatrem while much potent 

than paxilline [131, 145]. Remarkably, both lolitrem B as 

well as its intermediate metabolite, 31-epi-lolitrem B, 

significantly attenuate the production of IL-6 and TNF  

cytokines production in murine macrophages, whereas, no 

cytotoxic influence have been observed against the viable 

cells even at 100-250 folds higher levels making them an 

excellent candidates for designing immune modulator drugs 

[153]. It is noteworthy to know that lolitrem is structurally 

related to the other lolium indole-diterpene alkaloid 

tremorgen, paxilline [154], however, loliterm B, maximum 

tremorgenic influence is exhibited at a dose of 8.0 mg/Kg 

of body weight [131]. While other Lolium metabolites such 

as lolilline and lolitriol have no tremorgenic influence [155, 

156]. Nevertheless, despite that both of Lolitrem A, B and 

ergovaline are of the major mycotoxins in endophyte-

infected perennial ryegrass and tall fescue respectively 

[147, 157], however, the level of lolitrem B is five to ten 

folds than ergovaline knowing that in lamb as well as 

lactating ews the required toxic threshold of ergovaline 

[140, 158-161] is much lower that of lolitrem B [147, 162, 

163] of 1800-2000 g/kg in cattle and sheep [164]. 

Furthermore, un like loline alkaloids which has weaker 

influence as well as peramine which has no influence on 

mammalians than ergot alkaloids and other indole-diterpene 

alkaloids, ergot alkaloids of lolium specie including 

ergovaline exhibit their potent toxicities  through 

prohibiting CNS neurotransmitters metabolism besides, 

endocrine function counteraction influence potentially 

mediated through dopaminergic pathway interaction mode 

of action indicated by the low blood melatonin and 

prolactin levels [39]. In this context, (Larson, et al. 1995) 

have reported that ergovaline exploits an elevated affinity 

to the dopaminergic receptors, in addition to, its intestinal 

vasoactive peptide as well as cAMP production stimulants 
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[106]. In fact, ergovaline is the most toxic and abundant 

ergopeptide alkaloid in the infected tall fescue exhibiting 

similar neurological/motor symptoms of lolitrem B [165, 

166]. However, in lactating ewes both ergovaline in 

particular and lolitrem B exhibit mild activity against 

certain drug-metabolizing enzymes [147, 162]. 

Moreover, the other Lolium species indole-diterpene 

alkaloid, paxilline of weak tremoergenic influence [29, 95] 

induce GIT smooth muscles various stimulation responses 

particularly in sheep duodenum [156] which is reported by 

(McLeay, et al. 1999) to be coincided with its skeletal 

muscles directed tremoring influence, hence, disturbing 

digestion as encountered with lolitrem B [132]. In murine 

model, its tremorgenic influence prolongs for many hours 

with LD50 of 150 mg/kg body weight [167]. In fact, 

paxilline is a powerful smooth muscle high  conductance 

calcium-activated BKca channel blocker [138] in very low 

Ka value range of  (2-10) nM as encountered in bovine 

aortic smooth muscle channels [168, 169]. In addition, 

(Selala, et al. 1991), have also reported their contribution to 

smooth muscles contractions in guinea-pig ileum model via 

blocking these BKca channels along with enhancing 

acetylcholine release [170]. Interestingly, paxilline along 

with its novel congeners pyrapaxilline and 21-

isopentenylpaxilline, have been reported to prohibit nitrous 

oxide NO production in murine RAW264.7 cell line, 

nevertheless, they elecited their influences at 30 mg/ml and 

10 mg/ml concentration respectively. The later compound 

greater activity is related to its additional dihydropyran ring 

[171]. Further more, paxilline has been also reported to 

attenuate the macrophages lipopolysaccharides-induced 

singnaling of the IkB-a/NF-Kb signaling pathway [172]. In 

addition, other remarkably unexpected antiviral against 

H1N1 influenza virus is reported for paxilline as well as 

other related congeners, 21-isopentenylpaxilline, paspaline, 

and dehydroxypaxilline [173]. 

In addition, paxilline at 0.1-10 M level has been reported 

to incline rodents urinary bladder, and duodenum 

spontaneous tension which can not be reversed by atropine, 

while, treachea spasm in guinea-pig in a dose dependent 

manner via blocking the high conductance Ca
2+

-activated 

potassium channel, despite, its inactivity against their 

isolated portal vein and aortic rings at 1-10 M 

concentration. Yet, authors have expected stimulation may 

happens at concentration higher than 10 M. However, at 

10 M paxilline inclines the integrated myogenic of the 

bladder by (9.6  2.8) folds of their basal level [138] via 

promoting acetylcholine release from nerve terminals [170] 

although it dose not include muscarinic receptors agonistic 

influence. In addition, at concentration of 10 M paxilline 

induces treacheal spasm to an extent around one quarter of 

the maximum influence of carbacol similar dose within 20 

min. In deed, (DeFarias, et al. 1996) have spectulated that 

paxilline through blocking the BKca channel conductance 

prolongs the action potential hence, inclines the 

intracellular calcium inflex to the sarcolemma while the 

excitation-contraction coupling process as the molecular 

mechanism for its smooth muscle stimulation influence on 

the rodent bladder as well as that of GIT. Besides, they 

have concluded that paxilline synergistically potentiates 

charybdotoxin stimulatory influence on guinea-pig bladder 

[174]. Earlier, (Knaus, et al. 1994) have reported that 

paxilline enhances the binding of charybdotoxin to the 

BKca channel through paxilline binding to an allosteric site 

that enhances the receptor, located in the channel pore, 

affinity to charybdotoxin, although paxilline by itself is a 

powerful channel blocker as it permeate through the 

affected cell plasma membrane, hence, exploiting full 

blocking influence [138]. Remarkably in sheeps both 

paxilline, and lolitrem B have been also reported to 

stimulate skeletal muscles while, both stimulate and inhibits 

duodenum smooth muscles although their stimulatory effect 

can be partially antagonized by atropine [175, 176]. 

Furthermore, since, paxilline’s BKca channel blockage is 

calcium dependent thus, this blockage effect is declined 

with the incline of calcium ion level that enhances the 

channel conductance [138, 177, 178]. Paxilline have been 

reported to be detected in rats brain membrane besides, 

inhibiting the GABA-induced chlorine influx into 

microsacs through binding to GABAAreceptors as it can 

pass the blood brain barrier passing rapidly into the synapse 

by mean of their characteristic lipophilicty, hence, eliciting 

its central influence [179, 180]. Thus, (Gant, et al. 1987) 

have postulated that brain GABA receptors is its major site 

for electing its tremorgenic influence [179]. As compared to 

lolitrem B that elicit its maximum tremorgenic influence at 

8 mg/kg dose [131], paxilline is considered as a weaker 

tremorgenic agent as it elicit an intermittent tremorgenic 

influence at 35 mg/kg while a sustained influence at 227 

mg/kg intraperitoneal dose in murine model [181]. 

However, in sheep it exhibits extensive tremorgenic 

influence at 1.2 mg/kg body weight intravenous dose [182]. 

Through comparing both paxilline and lolitrem B 

pharmacological/toxic influence, it is obvious that a tiny 

structural difference modifies these mycotoxines binding 

properties to the calcium-activated BK channels as what is 

observed in wild and genetically modified mice models, 

yet, lolitrem B is still much more potent/longer acting 

blocker to these channels of motor functions than paxilline 

in vitro as well as in vivo [183-185]. Nevertheless, in 

contrast to lolitrem B, paxilline has more rapid 

onset/shorter duration of action [145]. In this context, brief 

tremorgenic influence at 4-80 mg/kg dose of complete 

inhibition BK/Maxi or hSlo Channel at 1 M concentration 

in mice, while, 70% channel blockage at 1.0 mg/kg dose 

and 10 nM concentration in sheep exploited as moderate to 

strong tremor 2 minutes after administration which 

disappear within an hour [132, 138, 140, 186]. Finally, it is 

necessary to not that Lolium species alkaloid biological 

influence is pH dependent as it has its impact on their 

chemical structure [187]. 

 

PHARMACOKINETICS OF LOLINES AND 

INDOLE-DITERPENS ALKALOIDS: 

 

Loline alkaloids are speculated to be retained intact in the 

blood after ingestion, however, in lambs it is reported that 

little fraction of loline is absorbed via passive diffusion 

mechanism while the majority of loline quantity is absorbed 

by other mechanism due to its molecule hydrophilicity, 

small molecular weight along with neutral charge, making 

this compound easily cleared out of the GIT mucosa.Hence, 

it could be an excellent potential anthelmintic agents of 

local GIT action for pharmaceutical investigation [107, 188, 
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189], although it is reported to have good bioavailability in 

the blood/gastric mucosa of horses and sheep next to oral 

intake [188, 190] as it is reported to be readily absorbed 

beside, rapidly excreted renally in hours as well as bovine 

models [87, 191, 192]. Loline congeners including loline 

base, N-acetylloline and N-formylloline can cross passively 

across all of the GIT cross-section tissues of epithelium 

particularly ileum that exhibit the maximum 5% capacity. 

However, the greatest detected level in the blood was of 

loline base followed by N-formylloline followed by N-

acetylloline, while, solely loline metabolites is detected in 

the liver and kidney tissues in lambs model as it suffers 

rapid metabolism. Yet, only small amount of N-

formylloline are detected in these two organs and blood as 

compared to loline base metabolites availably in abundance 

[188] while some N-acetylloline and N-formylloline are 

located in hours blood [190]. Interestingly, (Seawright, et 

al. 1991) have reported that these pyrrolizidine alkaloids 

metabolites bind to the hemoglobin’s globulin thiol groups 

of the hours’s red blood cells [193]. 

In addition, these four loline alkaloids are renally excreted 

2 hrs next to dosing in lamb model in addition to the 

metabolites of loline base as well as N-formylloline [194]. 

In this context, (Froehlich, 2020) have speculated that N-

formylloline is the active form of loline metabolites while 

the simple loline base is un effective due to its rapid 

metabolism to an un effective metabolites while parasites 

counteracting N-formylloline metabolite is of good oral 

bioavailability while of poor urine excretion, thus remains 

in the blood for several hours [188, 194]. Some have 

supposed that loline alkaloids are absorbed, metabolized 

and excreted quickly, hence, exerts no symptoms of 

poisoning [194, 195]. Some of the loline alkaloids are 

metabolized in the intestinal mucosa in sheep, while, loline 

alkaloids are detected in urine in cow urine where over 50% 

of the absorbed loline is renally excreted followed by N-

formylloline (bout 20%) followed by N-methylloline in 

sheep model meaning that their renal excretion is fast 

process occur within 15 minutes post dosing along with 

slow metabolism [194]. However, N-formylloline and N-

acetylloline are excreted in hair as reported in hours model 

[196]. Nevertheless, (Ruan, et al.) have reported that the 

metabolites of these unsaturated pyrrolizidine alkaloids, 

particularly the platynecine type, are readily excreted 

without any binding to renal tissues protein adducts [128].  

The Lolium species indole-diterpene, Loliterm B, is a 

lipophilic molecule insoluble in water, however, after oral 

administration, it has been reported to exhibit poor oral 

bioavailability due to poor GIT absorption [146, 197]. 

However, unlike, paxilline which is detected in murine 

brains at very low levels, high intravenous (75 g/kg BW) 

dose has exploited fast clearance from the systemic 

circulation despite the observed long term termorgenic 

influence in sheep model [145] as well as in lactating goat 

treated with (23 g/kg BW) dose [197]. It is hypothesized 

that loliterm B is trapped in certain body compartments 

then gradually released to the systemic circulation to find 

its way to the brain. This hypothesis is explained by the 

rapid blood clearance along with long term tremorgenic 

influence and encouraged by its detection in goat milk 32 

hours and 75 hours post 23 g/kg BW IV dosing of 3% 

excretion rate and 100 g/kg BW oral dosing of slower 

excretion rate respectively [197, 145]. Remarkably, a 

resembling long term detection of loliterm B in bovine milk 

is reported by (Finch, et al. 2013) [146]. Finally, both 

paxilline and loliterm is metabolically oxidized hepatically 

into a detoxification more polar metabolites excreted billary 

[198].   

 

TOXICOLOGY OF LOLIUM SPECIES AND THEIR 

ALKALOIDS 

 

Human as well as animal toxicities happens in certain 

instances due to food, medicine and herbal products 

contaminated with plant toxins particularly pyrrolizidine 

alkaloids found in 3% of the flowering plants including 

grass that, regardless their long term consequences on 

health, have bring about fatalities in animals and human 

globally. Several poisoning cases have been encountered in 

case of using herbal preparations and teas of these alkaloids 

[26, 49]. Most of these alkaloids are hepatotoxic or even 

carcinogens; however, others are non-toxic or targets 

organs other than liver by their toxicity [26, 199]. Lolium 

species toxicity mostly known as ryegrass toxicity of often 

resembling causative toxin, clinical outcomes, case 

development as well as toxicological mechanism. In 

mammalians including humans and cattle the most common 

clinical manifestation include neurological toxicity 

expressed as tremor, diarrhea, loss of appetite, endocrinal 

outcomes expressed by reduction of milk production, and 

late manifestations including jaundice as well as 

photosensitivity. The most characteristic clinical 

manifestation, tremor happens via blocking the CNS 

inhibitory pathways through allosteric binding to GABA 

receptor chloride channel as well as chloride and calcium 

channel. However, despite no marked histological findings 

of their toxicities, yet, signs of adipose stores loss as well as 

emaciation are reported [26]. Several determinant factors 

related to the enzymatic as well as structural aspects lies 

behind these compounds’ toxicity. The structural factors is 

related to their necine core basic or acidic structure and 

their substitutions nature/position mostly the ester one 

which are non-toxic unless they are bio-transformed into 

active metabolites such as pyrrolic esters [200, 201]. 

However, their bio-activation is hepatically performed, 

rather than detoxification, via consecutive series of 

oxidation-reduction as well as conjugation reactions [201-

203] although chemically different metabolites are obtained 

from the metabolism of different classes of these 

pyrrolizidines alkaloids. The detoxification of the two 

classes retronecine and otenecine which are with single 

unsaturation at C1, C2 positions of the necine basic ring 

leads to their oxidative activation via cytochrome P450 

hepatic enzymes into extensively reactive unstable pyrrolic 

esters (dehydropyrrolizidine) hepatotoxins that interact with 

thiol group of essential intracellular biomolecules such as 

enzymes or other proteins forming toxic pyrrole-protein 

adducts that targets the liver, lung besides other organs 

even acting as carcinogens [9, 128, 204]. However, these 

pyrrole active metabolites if interact with DNA may lead to 

genotoxicity bringing about carcinogencity [128]. In 

addition, if these reactive metabolites can be endogenously 

detoxified via binding to endogenous glutathione forming 

glutathione-pyrrole inactive water soluble adduct that us 

easily excreted [200, 201, 204, 128] on one hand. On the 
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other hand, platynecines class of the pyrrolizidines 

alkaloids, which are of saturated necine bases nucleus are 

not hepatotoxic compounds as the previously mentioned 

classes [201, 202] although they pass a resembling 

oxidative hepatic metabolic fate via cytochrome P450 

enzymes, yet, the resulted pyrrolic esters formed 

(dehydropyrrolizidine) is stable, un reactive, water soluble 

carboxylic acid that can not undergo conjugation reaction 

with thiol groups due to the absence of the necine base 

unsaturation, thus, needs no glutathione for their excretion 

[200]. The proposed metabolic pathway of Lolium species 

pyrrolizidine alkaloids is illustrated in figure (4) adapted 

from (Ruan et al. 2014) report [200]. However, 

(Stegelmeier, et al. 2013) consider pyrrolizidine alkaloids 

are generally non-toxic while, some of them are of 

toxicities other than hepatic one. In fact, (Stegelmeier, et al. 

2013) have reported that although N-oxidation hepatic 

detoxification reaction of pyrrolizidine alkaloids along with 

increasing its solubility, these N-oxide metabolites are 

readily reduced in the GIT to re-establish their toxicity [26]. 

 

 
Figure (4): Metabolism of pyrrolizidine alkaloids proposed by (Ruan et al. 2014) [200]. 

 

In general loline alkaloids are with no necine ring α,β-

unsaturation, with C2 and C7 oxygen bridge or without C1 

or C7 ester substitution thus they lack the common 

pyrrolizidine alkaloids cytotoxicity [9, 65, 205], 

nevertheless, unlike oral administration, IV administration 

of loline alkaloids do exert toxic influences on mammalians 

[205]. While, other authors considers loline alkaloids have 

no anti-mammalian influence exhibited by other 

pyrrolizidine alkaloids particularly those related to 

genotoxicities [65-67] although liver cytochrome P450 

oxidative enzymes have the ability of production of 

different genetic materials cross linking active pyrrolizidine 

alkaloids metabolites [66]. Generally, dimethylated or 1-

amino functionality aceylated loline alkaloids are not/ non-

conclusively mammalian poisoning substances [1, 48]. 

Remarkably, in mice models loline alkaloids have been 

reported to exploit immunosuppressive as well as anorexic 

influence in rodents model [107, 205]. In addition, (Wang, 

et al. 2019) have reported that pyrrolyzidine alkaloids is 

also detected in honey [206], while, other reported their 

detection in bovine milk contributing to toxic influence 

against lactating infants although in both cases their 

concentration bellow the toxic thresholds of adults 

indicating low toxicity to humans consuming animal meat,  

 

fats and products as reported in Germany [142, 146, 207]. 

However, number of reports have been issued regarding the 

incidence of several human poisoning cases due to 

ingestion of wheat products contaminated with the L. 

temultentum seeds [208, 209]. In this context, pure loline 

dihydrochloride have exhibited no toxicity up to 200 mg/kg 

body weight dose administered intraperitoneally, lethal at 

400 mg/kg IV dose while nontoxic at oral 100mg/kg dose 

in murine model [14, 17, 108]. Besides, it has no interaction 

with 1-adrenergic receptor [108], similarly with 

serotonergic receptors [109],  cholinergic 

nicotinic/muscarinic receptors [110, 111] or benzodiazepine 

receptors in calf brain [112], thus, L. temulentum or L. 

arundinaceum, is likely no associated with loline alkaloid 

as earlier believed [1]. Probably, the poisonous influence of 

L. temulentumseeds is exhibited by a mixture of its loline 

alkaloids, loline, lolinine, lolinidine, temuline and 

temulentine [16, 209] although (Bush, et al. 1983) have 

reported that loline analogues, N-formylloline, N-

acetylloline, N-methylloline, norloline, N-acetylnofloline 

and N-formylnofloline are not hepatotoxines, although they 

may promote the biological membranes penetration as well 

as toxicity of other Lolium species toxins like ergot 

alkaloids, hence, exploiting indirect toxicity in large excess 
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concentration [9]. Nevertheless, other authors have reported 

that lolines including N-acetyl loline, N-acetyl norloline, N-

methyl loline, and loline base  are generally not toxic to 

human beings or other mammalians as compared to other 

infected lolium alkaloids like ergot alkaloids [1, 9, 192, 

194], despite, some have believed that N-formylloline and 

N-acetylloline are involved in equine fescue oedema [190, 

196]. In general, lolines obtained from leaves, stems and 

head stems of L. temulentum are less toxic than nicotine in 

animal model [210]. However, in certain reports toxic/ 

lethal doses of loline alkaloids are specified. For example, 

the lethal dose of festucine (loline base) is 400 mg/Kg when 

administered IV, while, it is safe up to 1000 mg/kg oral 

dose [14] as what is encountered in murine models [17, 

211, 212]. In addition, daily oral administration of N-

formylloline, N-acetyl loline, N-acetyl norloline, N-methyl 

loline, and loline base mixture in a dose of 415 mg/kg has 

exhibited no obvious pathological, histological, 

hematological influence besides, no apparent influences on 

heart rate, blood pressure or motor coordination in murine 

model, although anorexia influence as well as cessation of 

weight gain have been reported particularly for N-

formylloline [205, 212]. Nevertheless, (Jackson, et al. 

1996) have correlated between N-formylloline and growth-

stimulating factor for its anorexic influence although they 

have reported that it has no influence on testes, 

hypothalamus and corpus striatum mass or on , prolactin 

and alkaline phosphatase levels [205]. Furthermore, as a 

dominant component (45.46%) of the in the total alkaloids 

(2.7%) seeds alcoholic extract of Lolium temulentum, loline 

has been reported to exhibit acute toxicity in rodents (mice 

and rats) model post oral as well as intraperitoneal dosing 

manifested as CNS depression that is deteriorated to coma 

then death due to respiratory failure. Yet, lethality of the 

total alkaloids toxicosis is greater in mice model by 1.58 

and 1.35 for the two routs respectively while, lethality after 

oral intraperitoneal rout is 30 folds greater than oral routs 

mostly due to the total alkaloids neuroleptic influence, 

rather than loline alone, that starts to affect animals 

behavior, without interfering the learning capability in a 

dose dependent manner. Remarkably, at doses of 280 and 

440 mg/kg doses loline lacks fatal acute toxicities in mice 

and rat models respectively [40]. It is reported that like 

classical ergotism, N-Acetylloline in fescue exploits its 

pituitary gland directed prolactin release inhibition, 

reproductive abnormality issues, hyperthermia and dry 

gangrene of extremities due to vasoconstriction inducing 

influence toxicity characteristics in animal models [32, 

117]. Moreover, in Pakistan, Lolium temulentum L seeds 

consuming toxicity are rarely lethal to humans, 

nevertheless, the toxicity characteristics of diarrhea, 

gastroenteritis, vomiting, ataxia, nausea. giddiness, apathy 

and mydriasis are reported to be attributed to Cynoide as 

well as loline alkaloids like temuline and loliine [21]. 

Interestingly, toxicity case of endophyte-infected tall 

fescue, containing 1610 pg/g (N-formylloline and N-

acetylloline) combination in addition to  0.39 g/g of 

ergovaline plus ergovalinine combination, ingestion by 

pregnant mares have caused teratogencity so that only 3 of 

11 fetus have been delivered alive while solely one of them 

passed the natal stage to lactate despite the two classes of 

alkaloids are bellow the toxic concentration [58]. However, 

other loline metabolites like loliline and Lolitriol are also 

exhibit nontremorgenic toxicity at doses of 8 mg/kg and 20 

mg/kg respectively in murine model [155] on one hand. On 

the other hand, lolitriol have been reported exhibit its 

influence via targeting BK/Maxi or hSlo ChannelIC50 = 196 

nM as compared to IC50 of 43 nM of loliterm B [139, 140]. 

However, the indole-diterpene alkaloid of Lolium species, 

paxilline has its tremorgenic toxicity on vertebrate that need 

further investigations for its neurological effect on K
+
 

channels [90, 213], as it is metabolically converted in vivo 

into the other indole-diterpene alkaloid, loliterm B that 

mediate most of the neural transmission disturbance fescue 

poisoning symptoms attributed to the alkaloid-promoted 

thiamine deficiency in animal model [9]. In this context, 

(Miles, et al. 1992) have reported that Lolitriol plus -

Paxitrol (16 mg/kg and 100 mg/kg) combination have 

exhibited lethal toxicosis at doses of 200 L dosage post 

initial lethargy period [140]. As compared to loliterm B, 

paxilline is a weaker termorgenic toxine [129]. In fact, 

loliterm B, is considered the most toxic indole-diterpene 

alkaloid of Lolium species, particularly in perennial 

ryegrass, that primarily contribute to their 

motor/neurological (tremorgenic) toxicities [129, 157] as 

well as in any other plant seeds containing loliterm B [157, 

214], via binding to BK channels, however, the 

duration/severity of its toxicity beside its excitatory 

influences are location dependent. In addition, these 

influences/toxicity are also dose, lipophilic character and 

metabolic fate dependent [215]. Moreover, (Craig, et al. 

2014) have reported that loliterm B exhibits its toxic effect 

at threshold level > 1.8 g/g dry weight of lolium plants in 

cattle [216], while, sever/prolonged tremor toxicity is 

exhibited by loliterm B, at dose range of 0.5-8.0 mg/kg due 

to inhibition of BK/Maxi or hSloChannel with IC50 of 4 nM 

at 70 g/kg dose [131, 135, 185]. Furthermore, both of 

ergot alkaloids including ergovaline of anti-

vertibrate/invertebrate toxicity and loliterms of solely 

antivertibrate toxicity are the active poisonous alkaloids 

responsible for endophytes infected Lolium species, in 

which they are detected, toxicities including L.perenne [5, 

13] to which most of toxicity cases in mammalians are 

reported [100, 217-219]. In this context, both of Lolitrem B 

and ergovaline are responsible these grasses toxicity when 

available in concentrations of 1.8 g/g and 0.3 g/g dry 

weight of the plants [89, 91, 220]. Yet, trace amount of 

ergot alkaloids including Ergovaline and related 

ergopeptines in tall fescue is also associated with its 

toxicity, characterized by reduce weight, hypethermia, 

blood flow restriction, reduced reproduction/milk 

production [1, 150]. In addition, like loline alkaloids, 

peramine is of weak toxicological characteristics against 

mammalians [215, 221]. In this context, peramine 

hydrochloride, at oral dose of 1000 mg/kg body weight 

exhibit highest toxicity level in murine model manifested 

by sluggish motor activity along with acute liver damage as 

revealed by autopsy, while, not influencing food intake, 

behavior, growth rate at dose of 50 g/g [221]. In murine 

model, infected ryegrass seeds consuming CNS toxicity 

manifestations involves hyperexcitability as well as 

nervousness [222] 

Regarding the Lolium plants toxicities like perennial 

ryegrass (Lolium perenne) motor/neurological toxicity, 
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characterized by tetanic muscle spasms that leads to severe 

incoordination as well as hypersensitivity to external 

stimuli, is to be a reversible case in animals in Australia and 

North America [26, 223], however, no human toxicities are 

reported. While, toxicity of annual ryegrass (Lolium 

rigidum Gaud.) can be lethal manifested as neurological 

disorders as commonly reported in in Australia, South 

Africa, but, rarely reported in North America [26]. In 

Germany, symptoms of stiffness and movement disorders 

are reported in horses ingested perennial ryegrass due to 

ergot alkaloid [224]. L. temulentum seeds of the loline 

alkaloid temuline, toxicity is manifested as CNS as well as 

GIT symptoms [68, 225]. Other fescue poisoning 

manifestations involve interference with energy metabolic 

processes due to thiamine deficiency [226], interference 

with brain/hypothalamic functions including, gamma-

aminobutyrate (GABA), glutamine serotonergic and 

melatonin pathways [227]. However, (Watt and Breyer-

Brandwijk, et al. 1962) have reported that lolium plants 

human intoxication symptoms are mutually similar to 

alcoholic sedation characterized with headache, dizziness, 

vertigo, mental confusion, difficulty in speech, inability to 

walk, vomiting, hypothermia and generalized shivering 

although a decoction of these plants is traditionally used in 

Moroccans folokloric medicine for haemorrhage and urine 

incontinence. In addition, other traditional medicine use of 

the powdered plant seeds for suppress the psychological 

and vasomotor disturbances associated with menopause 

when taken orally besides, being used topically for various 

skin disorders [209].  

 

CONCLUSIONS: 

 

The genus Lolium belonging to the family Poaceae or 

Gramineae involves around seven species, of poisonous 

grass plants grown globally particularly in Asia in corps 

especially wheat fields, however, in Iraq are called 

―rewatta‖. Their toxicity is mostly related to their 

characteristics alkaloids, the pyrrolizidine; lolines, indole-

diterpenes (ergots, loliterms, and paxillines) as well as 

peramine alkaloids mostly concentrated in their seeds, for 

which endophytes symbiosis/infection are involved in their 

synthesis particularly Acremonium, Neotyphodium or 

Epichloe¨species although these plants are capable of 

producing of amino-pyrrolizidine alkaloids like lolines 

individually without the need for fungal infection. These 

alkaloids are described to be contributing to both neuro- 

and non neuro-toxicities. The levels of these alkaloids 

ranging from 0.2-1 mg/g inclines to their optimum levels in 

the areal parts as well as seeds during later summer and 

autumn reaching up to 10 folds in dry plant and constitute 

45% of Lolium cuneatum Nevski of the total alkaloids 

(0.23%) of the chloroform extract. Chemically, the core 

nucleus of their pyrrolizidine alkaloids is necine composed 

of two fused saturated heterocyclic pentagonal rings with a 

nitrogen atom at one of the bridgehead with C1 amine 

group substitution which is characteristic to their loline 

alkaloids, including loline base, loline, Norloline, N-

acetylloline, N-formylloine, N-acetylnorloline and N-

formylnorloline. besides, a third exocyclic ring structure 

due to exocylic oxygen bridge occurs between C2 and C7. 

The difference between loline and norloline alkaloids is the 

existence of N-methyl group substitution at C1 amino 

group while the acetyl, methyl as well as formyl derivatives 

of loline are results of C1 amino group acylation or 

alkylation. Nevertheless, other dimeric loline alkaloids like 

lolidine in addition to other tricyclic alkaloid perloline have 

been isolated from Lolium temulentum L. both of the 

indole-diterpene alkaloids paxilline and ergovaline are 

reported to be the precursor of the most toxic lolium species 

alkaloid loliterms including loliterm B of levels ranging 3-6 

mg/g dry plant weight, which are biosynthesized with aid of 

endophytes symbiosis especially in the perennial ryegrass. 

In general, lolium species loline alkaloids are considered as 

relatively polar molecules as compared to the other 

lipophilic indole-diterpene alkaloids paxillines, loliterms 

and ergovaline which are the actual indicators of these 

plants toxicity. In some mammalians loline alkaloids are of 

poor oral bioavailability due to limited passive absorption 

although it is spectualted to remain unchanged within 

systemic circulation, thus, local intra-lumen 

pharmacological influences of these alkaloids are expected 

while in horses for example loline base, N-acetylloline and 

N-formylloline have exhibited good oral bioavailability 

potentially due to absorption mechanisms other than 

passive one particularly along with rapid renal excretion as 

in bovines. Only loline metabolites are detected in 

mammalian liver and kidney tissues as they suffer 

extensive/rapid metabolism, hence, loline base level > N-

acetylloline > N-formylloline in their blood blinding to 

hemoglobin SH groups. For such kinetics the solely 

systemically active form of loline alkaloids is N-

formylloline due to poor renal excretion, while, loline base 

is inactive due to fast first pass metabolism as well as rapid 

renal excretion since bovines for example excrete 50% of 

the absorbed loline renally. However, the indole-diterpene 

alkaloids have poor GIT absorption due to extensive 

lipophilicity as well as poor brain tissues accumulation in 

murine model due to rapid clearance from the systemic 

circulation through entrapment in body fat depots that may 

contributes to their prolonged influence. In general,  this 

type of lolium alkaloids are detoxified through metabolic 

N-oxidation to a more polar metabolites excreted through 

the biliary rout. Regardless some reported traditional uses 

from Africa, the loline alkaloids of these plants have been 

reported to exploit diverse neuronal/motor as well as 

nonneurological influences. The neurological influences 

primarily demonstrated as a depressive activity, exhibited 

via affecting the central nervous system through interacting 

the 1-adrenergic, 2-adrenergic, D2 dopamine, 

cholinergic, serotonergic and benzodiazepine receptors in 

the hypothalamic and cerebral cortex regions leading to 

tremorgenic as well as anorexic influences. Nevertheless, 

along with these neurological effects they affect the 

pituitary function leading to decline prolactin production. In 

the brain loline alkaloids particularly targets the 

dopaminergic recepotrs. However, peripherally, they have 

influenced the 2-adrenergic, D2 dopamine, or serotonergic 

receptors in the blood vasculatures smooth muscles leading 

to vasoconstriction and blood vessels thickening. While, in 

rabbits, cats and doges loline causes hypotension that could 

be accompanied by cardiac arrest at diastole due to its 

negative inotropic effect along with declining coronary 

blood flow. Moreover, loline alkaloids exhibits a 

remarkable immunosuppressive influence in murine model. 
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N-acetylloline, N-formylloline and N-methylloline have no 

central pituitary influences as they don’t target brain’s 

dopaminergic receptors. While, in excessive dose these 

loline alkaloids affects the energy production via affecting 

thiamine metabolism leading to thiamine deficiency. GI 

influences are also reported for lolines including increasing 

intestinal smooth muscles tone and contractility leading to 

diarrhea via promoting acetylcholine release and along with 

blocking histaminergic receptors. Moreover, both loline 

alkaloids as well as ergot alkaloids causes miscarriage as 

well as teratogenic influences in horses that causes 90% 

mortalities in fetuses. Although, semisynthetic derivatives 

of 8-12 carbon acyl chain substituting C1 amino group have 

significant antineoplastic influences against solid tumor in 

brine-shrimp model against human lung carcinoma A-549, 

breast carcinoma MCF-7, and colon adenocarcinoma HT-

29. Similar CNS directed tremorgenic as well as GIT 

directed stimulatory influences have been reported to the 

indoel-diterpene alkaloids paxilline and loliterm B that 

could fatal for loliterm overdoses exhibited through high 

conductance calcium-activated BKca channel blockade in 

addition to similar endocrinal as well as peripheral 

influences. In the context of lolium alkaloids toxicity, these 

with C1 and C2 necine nucleus unsaturation are with 

hepatotoxicity, genotoxic as well as carcinogenic as they 

are activated metabolically through oxidation into a very 

reactive N-oxide metabolites, while, those with no 

unsaturation are not. However, most of lolines are of 

saturated necine nucleus thus they share with other indole-

diterpene alkaloids particularly loliterm B and paxilline 

CNS toxicity, diarrhea, endocrinal as well as 

photosensitivity through allosteric binding to GABA 

receptor chloride channel as well as chloride and calcium 

channel determined by structural aspects particularly the 

their necine core basic or acidic structure and their 

substitutions nature/position for loline alkaloids. Finally, 

toxic influences of lolium alkaloids are function of their 

biological influences mostly exhibited via resembling 

molecular mechansims centrally as well as peripherally. 

Unfortunately, an extensively little is reported regarding 

their pharmacological, toxicological as well as kinetics in 

humans despite many spectulations for pharmacological 

benifits, some traditional uses as well as some biological 

activities of their acyl derivitives are reported which 

requires future investigations.  
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