Available online on 15.02.2024 at http://ajprd.com

Asian Journal of Pharmaceutical Research and Development

Open Access to Pharmaceutical and Medical Research

© 2013-24, publisher and licensee AJPRD, This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited

Review Article

Simultaneous Analysis of Anti-Hypertensive Drugs by RP-HPLC: An Overview

Akshay Katkale^{1*}, Sagar Fodase², Ashok Pingle¹, Ganesh Dhikale¹, Pratik Waghmare¹, Deepak Dhake¹

¹Department of Pharmaceutical Chemistry, MVP Samaj's College of Pharmacy, Nashik, Maharashtra, India-422002

²Department of Quality Assurance Technique, Sanjivani College of Pharmaceutical Education & Research, Sahajanand Nagar, Shingnapur, Kopargaon, Maharashtra, India- 423603

ABSTRACT

High performance liquid chromatography (HPLC) is an important qualitative and quantitative technique, generally used for the estimation of pharmaceutical and biological samples. In now a day pharmaceutical market, many newer antihypertensive combination drugs are available to control hypertension as well as to keep society healthy and stress free. All presently available old drugs have frequent dosing produces various side effects. So, there is need to analyse such antihypertensive drugs. The aim of this review is to analysed such commonly used antihypertensive combination drugs by using reverse phase high performance liquid chromatography (RP-HPLC). Reversed-phase high-performance liquid chromatography (RP-HPLC) involves the separation of molecules on the basis of hydrophobicity. The separation depends on the hydrophobic binding of the solute molecule from the mobile phase to the immobilized hydrophobic ligands attached to the stationary phase. The drugs like Amlodipine besylate and Valsartan, Irbesartan and Hydrochlorothiazide, Atenolol and Chlorthalidone, Hydrochlorothiazide and Candesartan, Ramipril and Amlodipine, Hydrochlorothiazide and Enalapril, Quinapril and Hydrochlorothiazide etc. About fifteen combination drugs are analysed by using RP-HPLC. This review assists in appropriate selection of column, mobile phase, pH, flow rate, detector and form of such combination drugs.

KEYWORDS: Simultaneous analysis, Antihypertensive, Combination, RP-HPLC

A R T I C L E I N F O: Received 20 Oct. 2023; Review Complete25 Dec.2023; Accepted 16 Jan 2024; Available online 15 Feb. 2024

Cite this article as:

Katkale A, Fodase S, Pingle A, Dhikale G, Waghmare P, Dhake D, Simultaneous Analysis of Anti-Hypertensive Drugs by RP-HPLC: An Overview, Asian Journal of Pharmaceutical Research and Development. 2024; 12(1):87-97. DOI: <u>http://dx.doi.org/10.22270/ajprd.v12i1.1355</u>

*Address for Correspondence: Akshay Katkale, Department of Pharmaceutical Chemistry, MVP Samaj's College of Pharmacy, Nashik, Maharashtra, India

INTRODUCTION

High pressure liquid chromatography (also known as high pressure liquidchromatography) is a type of column chromatography used to separate, identify, and quantify active ingredients in biochemistry and analysis. [1].HPLC mainly utilizes a column that holds packagingmaterial (stationaryphase), a pump that moves the mobile phasethrough the column and a detector that shows the retention time of the molecule. Retention time varies depending on the interaction between the stationary phases the molecule being analysed, and the solvent used. [2] A known amount of the material to be analysed is added to the mobile phase stream and evaluated by a chemical or physical interaction with the stationary phase. The amount of retardation is determined by the type of the analyte as well as the stationary and mobile phase composition. Retention time is the time it takes for a certain analyte to elute (come out of the end of the column). Any miscible combination of water and organic liquids is the most common mobile phase utilised (the most common are methanol & acetonitrile).

Gradient elution is used to change the mobile phase composition during the study. [3]

TYPES OF HPLC:

The phase system employed in the process determines the type of HPLC.[3,4] The following HPLC types are commonly used in analysis:

Normal phase chromatography:

This approach separates analytes based on polarity and is also known as Normal phase HPLC (NP-HPLC). A polar stationary phase and a non-polar mobile phase are used in NP-HPLC. The polar analyte interacts with the polar stationary phase and is retained by it. As the polarity of the analyte rises, so does the adsorption strength, and the interaction between the polar analyte and the polar stationary phase lengthens the elution time.

Reversed phase chromatography:

Reversed phase high performance liquid chromatography (RP-HPLC) consists of a non-polar stationary phase and amoderately aqueous polar mobile phase. RP-HPLCworks on the principle of hydrophobic interactions, the non-polar stationary phase is formed by repulsive forces between a polar eluent, the comparatively non-polar analyte, and the non-polar eluent. When the analyte molecule associates with the ligand in the aqueous eluent, the contact surface area around the non-polar segment of the analyte molecule is proportional to the contact surface area around the non-polar segment of the analyte molecule.

Size exclusion chromatography:

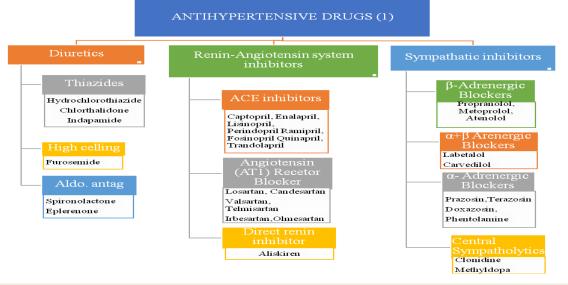
Size Exclusion chromatography, also known as gel permeation chromatography or gel filtration hromatography, is a type of chromatography that separates particles based on their size. It can also be used to figure out the quaternary and tertiary structures of proteins and amino acids. This method is often used to determine the molecular weight of polysaccharides.

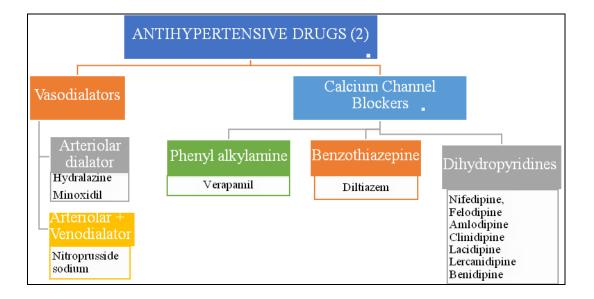
Ion exchange chromatography:

Ion-exchange chromatography (IEC) depend on the attraction between solute ions and charged sites bound to the stationary phase. The ion exchange chromatography ismainly used for the purification of water.

In this method separation based on specific reversible interaction of proteins with ligands. Ligands are covalently attached to solid support on a bio-affinity matrix, retains proteins with interaction to the column-bound ligands. Proteins bound to a bio affinity column can be eluted in two ways:

• Biospecific elution: inclusion of free ligand in elution buffer which competes with column bound ligand.


• Aspecific elution: change in pH, salt, etc. which weakens interaction proteinwith column-bound substrate.


HYPERTENSION:

Hypertension is a very common disorder, particularly past middle age. It is not a disease in itself, but is an important risk factor for cardio-vascular mortality and morbidity. The cut-offmanometric reading between normotensive and arbitrary. For hypertensive is practical purposes'hypertension' could be that level of BP at or abovewhich long-term antihypertensive treatment willreduce cardiovascular mortality. The JNC 7*(2003) and WHO-ISH@ guidelines (2003) havedefined it to be 140 mm Hg systolic and 90 mmHg diastolic, though risk appears to increase evenabove 120/80 mm Hg. Epidemiological studieshave confirmed that higher the pressure (systolicor diastolic or both), greater is the risk ofcardiovascular disease. Majority of cases are of essential (primary) hypertension, i.e., the cause is not known. Sympathetic and renin-angiotensin systems may or maynot be overactive, but they do contribute to thetone of blood vessels. Many antihypertensivedrugs interfere with these regulatory systems at one level or the other. Antihypertensive drugs, bychronically lowering BP, may reset the barostatto function at a lower level of BP. [5]

As per the 2012 WHO report 1 out 4 adults i.e.,1.13 billion are suffering from hypertension worldwide and that causes 50% of death due to stroke and heart disease.The combination therapyalso reduces the risk of cardiovascular complications due to the rapid control of targeted BP further, the use of two or more drugs in lower dose instead of higher dose of single drug also reduces the side effects related with high dose of one drug. [6]

Bio-affinity chromatography:

Antihypertensive combination drugs:[7]

Sr. No	Drug name	Brand name	Approved year
1)	Amlodipine besylate and Valsartan	Exforge	2010
2)	Irbesartan and Hydrochlorothiazide	Avalide	1998
3)	Atenolol and Chlorthialidone	Tenoretic 50	1998
4)	Hydrochlorothiazide and Condesartan	Atacand HCT	2000
5)	Ramipril and Amlodipine	Car-RaceAM	2010
6)	Hydrochlorothiazide and Enalapril	Lepril-H	2013
7)	Quinapril and Hydrochlorothiazide	Accuretic	1999
8)	Telmisartan and Hydrochlorothiazide	Teliska-H	2000
9)	Azilsartanmedoxomil and Chlorthalidone	Azilsmart	2011
10)	Captopril and Hydrochlorothiazide	Captopril-H	1984
11)	Hydrochlorothiazide and losartan potassium	Luthozide-H	2003
12)	Amlodipine and Atenolol	Amlopres-AT	1996
13)	Trandolapril and Verapamil	Calaptin	1998
14)	Hydrochlorothiazide and Triamterene	Ditide	1965
15)	Hydralazine Hydrochloride &IsosorbideDinitrate	Isorus	2005

Table 1: Antihypertensive combination drugs with brand name and approved year.

Amlodipinebesylate and Valsartan:

Amlodipinebesylate, 3-ethyl5-methyl [4RS]-2-[[2aminoethoxy] methyl]-4-[2-chlorophenyl]-6-methyl-1, 4-Dihydropyridine -3, 5-dicarboxylate benzene sulphonate, It is a dihydropyridine derivative with calcium antagonist activity. It is used in the management of hypertension, chronic stable angina pectoris. Amlodipine besylate inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle.

ValsartanN-[p-[o-1H-tetrazol-5-ylphenyl] benzyl] –N-valeryl-L-valine is an orally active, potent and specific competitive angiotensin II antagonist acting at the ATI receptor, which mediates all known effects of angiotensin II on the cardiovascular system. Valsartan is widely used in the treatment of hypertension [8].

Table 2: Analysis of amlodipine besylateand valsartan by RP-HPLC.	
---	--

Sr. No	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	RP-HPLC	C ₁₈ (150×4.6 mm,5µm)	Methanol: Potassium dihydrogen phosphate buffer (60:40 v/v) pH-2.5 Flow rate-1ml/min	λ 238 nm	Tablet	[8]
2)	RP-HPLC	Phenomenexlun a C_{18} (250×4.6) mm,5 μ m	Acetonitrile: water (75:25 v/v) pH-4.8 Flow rate-0.8 ml/min	λ 245 nm	API	[9]
3)	RP-HPLC	XTerua RP C ₁₈ (150×4.6) m,5μm	Water: Acetonitrile: Trifluoro acetic acid (40:60:10 v/v) pH-4.2 Flow rate-1.5ml/min	λ 237 nm	API	[10]

Irbesartan and Hydrochlorothiazide:

Irbesartan,2-butyl-3({4- [2- (2H-1, 2, 3, 4-tetrazol-5yl) phenyl] phenyl} methyl) 1, 3-diazaspirol [4, 4] non-1-en-4-one,it is mainly used for the treatment of hypertension. IRB is an angiotensin II Type 1 receptor antagonist that is highly selective for Type 1 angiotensin II receptor. Angiotensin II is the main presser agent for angiotensin system with the effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium.

Hydrochlorothiazide,6-chloro-3, 4-dihydro-7-sulfamoyl-2H-1, 2, 4-benzothiadiazine 1, 1-dioxide,Irbesartan and hydrochlorothiazide are used jointly to lower blood pressure. Irbesartancontrols high blood pressure (hypertension) by relaxation of blood vessels.Thiazide affects the renal tubular mechanisms of electrolytes reabsorption, directly increasing excretion of sodium salt and chloride in approximately equivalent amounts.The combination is useful in the treatment of mild-to-moderate hypertension. [11].

 Table 3: Analysis of irbesartan and hydrochlorothiazide by RP-HPLC.

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Irbesartanand Hydrochlorothiazide	RP-HPLC	C ₁₈ (250×4.6mm, 5µm)	Potassium dihydrogen phosphate: acetonitrile (55:45 v/v) pH-2.5Flow rate- 1.3ml/min	λ210 nm	API	[11]
2)	Irbesartan and Hydrochlorothiazide	RP-HPLC	Hypersil pack BDS C ₁₈ (250×4.6mm,5µm)	Acetonitrile: buffer (sodium acetate anhydrous) (55:45 v/v) pH-3.5 Flow rate-1ml/min	λ260 nm	API	[12]
3)	Irbesartan and Hydrochlorothiazide	RP-HPLC	C ₁₈ (250×4.6mm, 5μm)	Phosphate buffer: Acetonitrile (60:40 v/v) pH-6.4 Flow rate-1ml/min	λ258 nm	API & Tablet	[13]

Atenolol and Chlorthalidone:

Atenolol,2-(4-{2-hydroxy-3-[(propan-2-yl) Amino] propoxy] phenyl) acetamide, Molecular formula C14H22N2O3 and Molecular weight 266.34 g/mol.Atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at B-1 adrenergic receptors in the heart and vascular smoothmuscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol also competitively block B- 2 adrenergic responses in the bronchial and vascular smooth muscles.

Chlorthalidone, 2-chloro-5-(1-hydroxy-3-oxo-2,3-dihydro-1H-isoindol-1-yl) benzene-1-sulfonamide, Molecular formula C14H11CIN2O4S and Molecular weight 338.766 g/mol. Chlorthalidone inhibits sodium ion transport across the renal tubular epithelium in the cortical diluting segment of the ascending limb of the loop of Henle. By increasing the delivery of sodium to the distal renal tubule, chlorthalidone indirectly increases potassium excretion via the sodium-potassium exchange mechanism. [14].

Table 4: Analysis of atenolol and	d chlorthalidone by RP-HPLC.
-----------------------------------	------------------------------

Sr.No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref.No
1)	Atenolol and	RP-HPLC	XterraRpC ₈ (150	Potassium dihydrogen phosphate	λ240 nm	API	[14]
	Chlorthalidone		×4.6 mm, 5µm)	buffer: methanol (50:50 v/v)			
				pH-3.6 Flow rate-0.5ml/min			
2)	Atenolol and	RP-HPLC	Agilent	Ammonium acetate buffer: methanol	λ228 nm	Tablet	[15]
	Chlorthalidone		C ₈ (150×4.6	(60:40 v/v) pH-7.00			
			mm,5µm)	Flow rate-1.0ml/min			
3)	Atenolol and	RP-HPLC	THERMO C18	Dipotassium phosphate: methanol	λ266 nm	API	[16]
	Chlorthalidone		(250×4.6	(65:35 v/v) pH-3.8			
			mm,5µm)	Flow rate-1.0 ml/min			

Hydrochlorothiazide and Candesartan:

Hydrochlorothiazide, it is a prototypical member of the thiazide diuretic. It helps in reduction of reabsorption of various electrolytes through renal tubules resulting in excretion of water along with different electrolytes like sodium, potassium, chloride, magnesium etc. It is widely used in the treatment of oedema, hypertension, hyperparathyroidism, and diabetes insipidus. Candesartan,2-ethoxy-1-({4- [2-(2H-1, 2, 3, 4-tetrazol-5-yl) phenyl] phenyl} methyl)-)-1H-1, 3-benzodiazole-7-carboxylic acid, it is an angiotensin receptor blocking agent which can be used alone or in combination with other drugs for the treatment of hypertension. It competes with angiotensin-II for its receptors there by lowering blood pressure. It is also used as an effective alternative for the treatment of heart failure, myocardial infarction, coronary diseases and systolic dysfunction. [17]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Hydrochlorothiazide and Candesartan	RP-HPLC	Silanol BDS C ₁₈ (250×4.6 mm,5µm)	Orthophosphoric acid: Acetonitrile (30:70 v/v) pH-2.8 Flow rate-1 ml/min	λ210 nm	API	[18]
2)	Hydrochlorothiazide and Candesartan	RP-HPLC	Phenomenex C ₁₈ (250×4.6 mm,5µm)	Ammonium acetate: acetonitrile (65:35 v/v) pH-2.6 Flow rate-1.2 ml/min	λ260 nm	API	[19]
3)	Hydrochlorothiazide and Candesartan	RP-HPLC	Kromasil,O DSC ₁₈ (250×4.5 mm,5µm)	Methanol: Acetonitrile: Disodium hydrogen phosphate (20:30:50 v/v/v) pH-2.5 Flow rate-1 ml/min	λ240 nm	API & Tablet	[20]

Ramipril and Amlodipine:

Ramipril,2-[N-[(S)-1-(ethoxy carbonyl)-3-phenylpropyl)] – L-alanyl] -(1S, 3S, 5S)-2-azabicyclo [3-3-0] octane carboxylic acid, is an angiotensinconverting enzyme (ACE) inhibitor. It acts on the renin angiotensin aldosterone system. It inhibits the conversion of the Inactive angiotensin I to the highly potent vasoconstrictor, angiotensin II, and also reduces the degradation of bradykinin. It is to treat high blood pressure and heart failure.Amlodipine,it is a longacting dihydropyridine calcium channel blocker (CCB) with dose-related antihypertensive efficacy. It inhibits calcium ions transport into vascular smooth muscle and cardiac muscle to protect the target organs. However,it would also cause peripheral oedema as a side effect. It issued in the treatment of hypertension and angina. [21].

T. 11. C.	A 1 ' (
Table 6:	Analysis of	ramipril and	amlodipine by RP-HPLC.

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref.No
1)	Ramipril and Amlodipine	RP-HPLC	InertsilODS-3 C ₁₈ (250×4.0 mm,3µm)	Sodium perchlorate (containing triethylamine): acetonitrile (60:40 v/v) pH-2.6 Flow rate-1.0 ml/min	λ210 nm	Tablet	[21]
2)	Ramipril and Amlodipine	RP-HPLC	BDS C ₁₈ (250×4.6 mm,5μm)	Phosphate buffer: Acetonitrile (45:55 v/v) pH-6.5 Flow rate-1 ml/min	λ230 nm	API	[22]
3)	Ramipril and Amlodipine	RP-HPLC	C ₁₈ (250×4.6 mm,5µm)	Acetonitrile: Sodium phosphate buffer: Methanol (50:20:25 v/v/v) pH-6.8 Flow rate-0.8 ml/min	λ210 nm	API & Tablet	[23]

Hydrochlorothiazide and Enalapril:

Enalapril,N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-Lalanyl}-L-proline,it is an angiotensinconverting enzyme inhibitor used in the treatment of hypertension and heart failure. It is also used to reduce the incidence of coronary ischemic events, including myocardialinfarction. Hydrochlorothiazide, it is diuretic of benzothiadiazide class, extremely useful in the treatment of edema, hypertension and hypercalcaemia. A new combination dosage form containing enalapril and hydrochlorothiazide is indicated for the treatment and management of edema and hypertension. [24].

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Hydrochlorothiazide and Enalapril	RP-HPLC	ODS UG – C ₁₈ (250×4.5 mm,5µm)	Acetate buffer: methanol: Acetonitrile (60:20:20 v/v/v) pH-5 Flow rate-0.8 ml/min	λ232 nm	Tablet	[25]
2)	Hydrochlorothiazide and Enalapril	RP-HPLC	C ₁₈ (150×3.9 mm,5µm)	Phosphate buffer: Acetonitrile (80:20 v/v) pH-3.4 Flow rate-1ml/min	λ265 nm	API & Human Plasma	[26]
3)	Hydrochlorothiazide and Enalapril	RP-HPLC	InertialODS C ₁₈ (250×4.6 mm,5µm)	Phosphate buffer: Acetonitrile (55:45 v/v) pH-3.7 Flow rate-1ml/min	λ215 nm	API	[27]

Table 7: Analysis of hydrochlorothiazide and enalapril by RP-HPLC.

Quinapril and Hydrochlorothiazide:

Quinapril,(3S)-2-[(2S)-2-[[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]-amino] propanoyl]-3, 4-dihydro-1Hisoquinoline-3-carboxylic acid,it is a prodrug and an angiotensin converting enzyme inhibitor. The esterases of the liver transform quinapril into quinapril at, an active metabolite. Quinapril is used in the treatment of congestive heart failure and hypertension. Angiotensin converting enzyme catalyses the formation of angiotensin II, a powerful vasoconstrictor and increases blood pressure, from angiotensin I. The inhibition of angiotensin converting enzyme by quinapril leads to the reduced production of angiotensin II. The result is the reduced plasma concentrations of aldosterone, increased sodium excretion in urine and increase potassium concentration in blood.

Hydrochlorothiazide, itis a diuretic belonging to the thiazide class of drugs. The combination of quinapril and hydrochlorothiazide is useful in treatment of hypertension.[28]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Quinapril and Hydrochlorothiazide	RP-HPLC	Hypersil BDS C_{18} (150×4.6 mm,5 μ m)	Triethylamine buffer: acetonitrile (60:40 v/v) pH-3.5 Flowrate-1 ml/min	λ220 nm	API	[29]
2)	Quinapril and Hydrochlorothiazide	RP-HPLC	Hichrom C ₁₈ (250×4.6 mm,10µm)	Acetonitrile: Potassium dihydrogen phosphate (40:60 v/v) pH-2.5 Flow rate-1ml/min	λ211 nm	API	[30]
3)	Quinapril and Hydrochlorothiazide	RP-HPLC	Agilent C ₁₈ (250×4.6 mm,5µm)	Potassium dihydrogen phosphate: Methanol (65:35 v/v) pH-4.5 Flow rate-1ml/min	λ210 nm	Tablet	[28]

Table 8: Analysis of quinapril and hydrochlorothiazide by RP-HPLC.

Telmisartan and Hydrochlorothiazide:

Telmisartan, 4'- [(1, 4-dimethyl-2'-propyl [2, 6'-1Hbenzimidazol]-1'-yl) methyl]- [1, 1'-biphenyl]-2-carboxylic acid,it is a non-peptide molecule under the class of angiotensin II receptorantagonist. It is used for the treatment of essential hypertension as alone or in combination with other agents.

Hydrochlorothiazide, it is a widely used thiazide diuretic. The combination of telmisartanand hydrochlorothiazide is useful mainly in the Treatment of mild to moderate hypertension. [31]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Telmisartan and Hydrochlorothiazide	RP-HPLC	InertsilL11- (250×4.6 mm,5µm)	Acetonitrile: Methanol (50:50 v/v) pH-3.0 Flow rate-1.2 ml/min	λ298 nm	Tablet	[31]
2)	Telmisartan and Hydrochlorothiazide	RP-HPLC	ODS Hypersil $C_{18}(25 \text{ cm} \times 4.6 \text{ mm},5\mu\text{m})$	Acetonitrile: Potassium dihydrogen phosphate (60:40 v/v) pH-3.0 Flow rate-1.0 ml/min	λ271 nm	Tablet	[32]
3)	Telmisartan and Hydrochlorothiazide	RP-HPLC	Kromasil C ₁₈ (250×4.6 mm,5µm)	Acetonitrile: Methanol (80:20 v/v) pH-3.0 Flow rate-1.0 ml/min	λ270 nm	Tablet	[33]

Table 9: Analysis of telmisartanand hydrochlorothiazide by RP-HPLC.

Azilsartanmedoxomil and Chlorthalidone:

Azilsartanmedoxomil and Chlorthalidone,(5–Methyl–2– Oxo-1, 3–dioxol-4–yl) Methyl 2–ethoxy-1– {[2'-(5-Oxo-4, 5–dihydro-1, 2, 4–oxadiazol-3-yl) Biphenyl–4–yl]methyl}-1H–benzimidazole-7-carboxylate mono-potassium salt,Fixed-dosecombination is found to show superior antihypertensive efficacy in blood pressure reduction in patients with stage 2 hypertension.Azilsartanmedoxomil is an angiotensin II receptor antagonist. It is a white crystalline powder which is practically insoluble in water, freely soluble in methanol, dimethyl Sulfoxide and dimethylformamide, soluble in acetic acid, slightly soluble in acetone and acetonitrile and very slightly soluble in tetrahydro furan and 1-octanol. [34].

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref.No
1)	Azilsartanmedoxomil and Chlorthalidone	RP-HPLC	BDS C ₁₈ (100×4.6 mm,5µm)	Phosphate buffer: Acetonitrile (90:10 v/v) pH-3.2 Flow rate-0.9 ml/min	λ260 nm	Tablet	[35]
2)	Azilsartanmedoxomil and Chlorthalidone	RP-HPLC	C ₈ (150×4.6 mm,5μm)	Acetonitrile: Potassium dihydrogen phosphatebuffer (90:10 v/v) pH-2.8 Flow rate-0.8 ml/min	λ220 nm	API	[36]
3)	Azilsartanmedoxomil and Chlorthalidone	RP-HPLC	Cosmosil C ₁₈ (250×4.6 mm,5µm)	Acetonitrile:Water (70:30 v/v) pH-2.8 Flow rate-0.9 ml/min	λ244 nm	API	[34]

Captopril and Hydrochlorothiazide:

Captopril, 1-[(2S)-3-mercapto-2-methylpropionyl]-l-proline, is an angiotensin-converting enzyme inhibitor that is used in the treatment of hypertension and congestive heart failure. Hydrochlorothiazide, is a diuretic agent belonging to the class of benzothiadiazine drugs. A new combinationdosage form of captopril andhydrochlorothiazide is indicated for the treatment and management of hypertension. [37].

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Captopril and Hydrochlorothiazide	RP-HPLC	Phenomenex Luna C ₁₈ (150×4.6 mm,5µm)	Acetonitrile:water (30:70 v/v) pH-2.8 Flow rate-1.0 ml/min	λ210 nm	API	[38]
2)	Captopril and Hydrochlorothiazide	RP-HPLC	Diamonsil C ₁₈ (150×4 mm,5µm)	Trifluroacetic acid: Acetonitrile (87:13 v/v) pH-1.8 Flow rate-1.2ml/min	λ263 nm	Tablet	[37]
3)	Captopril and Hydrochlorothiazide	RP-HPLC	ODS C ₁₈ (15 cm×4.6 mm, 5μm)	Methanol:Water (45:55 v/v) pH-3.8 Flow rate-1ml/min	λ210 nm	Tablet	[39]

Table 11: Analysis of captopril and hydrochlorothiazide by RP-HPLC.

Hydrochlorothiazide and losartan potassium:

Hydrochlorothiazide, it widely used diuretic drug of the thiazide class. It is often used in the treatment of hypertension, congestive heart failure, symptomatic edema and in the prevention of kidney stones.

Losartan2-butyl-4-Chloro-1-{[2'-(1H-tetrazol-5-yl) biphenyl-4-yl] Methyl} imidazol-4-yl) methanol,it is an Angiotensin II receptor antagonist used mainly to treat Hypertension. Combination of hydrochlorothiazide and losartan potassium widely prescribed by the physicians due to simple dosing regimens, improved hypertension control, fewer dosedependent side effects and low-cost treatment of hypertension. So, it is essential to develop a simple method for simultaneous estimation of hydrochlorothiazide and losartan in combined formulation. [40]

Table 12: Analysis of hydroch	lorothiazide and losartan	potassium by RP-HPLC.
-------------------------------	---------------------------	-----------------------

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Hydrochlorothiazide and losartan potassium	RP-HPLC	Microbondapak C ₁₈ (300×3.9 mm,10µm)	Sodium dihydrogen orthophosphate: methanol (80:20 v/v) pH-3 Flow rate-1.0 ml/min	λ270 nm	Tablet	[41]
2)	Hydrochlorothiazide and losartan potassium	RP-HPLC	LC C ₁₈ (150×4.6 mm, 5µm)	Potassium dihydrogen phosphate:Acetonitril e (65:35 v/v) pH-3.1 Flow rate-1.0 ml/min	λ232 nm	Tablet	[42]
3)	Hydrochlorothiazide and losartan potassium	RP-HPLC	Shim Pack CLC- ODS (250×4.6 mm, 5µm)	Phosphoric acid solution:Acetonitrile (60:40 v/v) pH-3.0 Flow rate-1.5 ml/min	λ254 nm	Tablet	[40]

Amlodipine and Atenolol:

Amlodipine, Amlodipine is long-acting calcium channel blocker used as anti-hypertensive and in treatment of angina. Amlodipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels; in angina it decreases blood flow to the heart muscle. Atenolol, it is a β -blocker see to be equally effective as an antihypertensive, antianginal and antiarrhythmic drug widely used as cardiovascular drug in combination with Amlodipine. Atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta (1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting sympathetic stimulation. [43].

Sr. No	Drug combination	Method S	Column	Mobile phase	Detection	Form	Ref. No
1)	Amlodipine and Atenolol	RP-HPLC	BDS C ₁₈ (250×4.6 mm,5µm)	Phosphate buffer: methanol: Acetonitrile (40:30:30 v/v/v) pH-5.0 Flow rate-3.0	λ213	Capsule & Tablet	[43]
2)	Amlodipine and Atenolol	RP-HPLC	Intertie C_{18} (250×4.6 mm, 5µm)	Phosphate buffer: Acetonitrile: Methanol (40:35:25 v/v/v) pH-3.0 Flow rate-1.0 ml/min	λ225	API	[44]
3)	Amlodipine and Atenolol	RP-HPLC	C ₁₈ (150×4.6 mm, 5μm)	Phosphate buffer: Methanol:Acetonitrile (35:55:10v/v/v) pH-3.0 Flow rate-1.0 ml/mi	λ237	API	[45]

Table 13: Analysis of amlodipine and atenolol by RP-HPLC.

Trandolapril and Verapamil:

Trandolapril,(2S, 3aR, 7aS)-1-[(2S)-2-{[(2S)-1-ethoxy-1oxo-4-phenylbutan-2-yl] amino} propanoyl]-octahydro-1Hindole-2-carboxylic acid,itis a non-sulfhydryl prodrug thatbelongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is metabolized to its biologically active diacid formtrandolapril in the liver. Trandolapril atinhibits ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Verapamil, 2-(3, 4-dimethoxyphenyl)-5- {[2-(3, 4-dimethoxyphenyl) ethyl] (methyl) amino}-2-(propan-2-yl) pentane nitrile, Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thus reducing heart rate and blood pressure. Verapamil mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect. [46]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Trandolapril and Verapamil	RP-HPLC	Intertsil ODS 3V (150×4.6 mm, 5µm)	Acetonitrile: Triethylamine buffer (40:60 v/v) pH-3.0 Flow rate-1.3ml/min	λ216	API	[46]
2)	Trandolapril and Verapamil	RP-HPLC	Intertsil C_{18} (250×4.6 mm, 5µm)	Methanol: Phosphate buffer (55:45 v/v) pH-4.8 Flow rate-1.0 ml/min	λ282	API	[47]
3)	Trandolapril and Verapamil	RP-HPLC	SymmetricalC 18 (150×4.6 mm,3.5µm	Potassium dihydrogen phosphate buffer: Acetonitrile (35:65 v/v) pH-2.2 Flow rate-0.6 ml/min	λ230	API	[48]

Table 14: Analysis of trandolapril and verapamil by RP-HPLC.

Hydrochlorothiazide and Triamterene:

Hydrochlorothiazide, it widely used diuretic drug of the thiazide class. It is often used in the treatment of hypertension. It is white crystalline powder and it is soluble in dilute ammonia, slightly soluble in water.

Triamterene, 2, 7-Diamino-6-phenyl-1, 2, 3, 7-tetrahydro-4pteridinamine.Triamterene is a potassium-sparing diuretic is used in combination with thiazide diuretics for the treatment of high blood pressure. It is white crystalline powder, soluble in formic acid. The combination ofhydrochlorothiazide and triamterene is used to treat hypertension.[49]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Hydrochlorothiazide and Triamterene	RP-HPLC	Luna C ₁₈ (250×4.6 mm, 5µm)	Acetonitrile: Ortho phosphoric acid (25:75 v/v) pH-2.5 Flow rate-1.0 ml/min	λ272	API	[49]
2)	Hydrochlorothiazide and Triamterene	RP-HPLC	C ₁₈ (250×4.6 mm, 5μm)	Phosphate buffer: methanol: Acetonitrile (55:35:10 v/v/v) pH-3.5 Flow rate-1.0 ml/min	λ270	Tablet	[50]
3)	Hydrochlorothiazide and Triamterene	RP-HPLC	Zorbax eclipse plus RRDH C ₁₈ (50×2.1 mm,1.7 μm (Formic acid: methanol: water (50:40:10 v/v/v) pH-2.7 Flow rate-0.4 ml/min	λ254	Tablet	[51]

Table 15: Analysis of hydrochlorothiazide and triamterene by RP-HPLC.

Hydralazine Hydrochloride & Isosorbide Dinitrate:

Isosorbidedinitrate,1,4:3,6-dianhydro-2,5-di-O-nitro-Dglucitol or (3R,3aS,6S,6aS)-6-(nitrox)-hexahydrofuro[3,2] furan-3-yl nitrate,Isosorbidedinitrate is a moderate to long acting oral organic nitrate which acts as a vasodilator. It is profoundly used in the treatment of angina pectoris, a condition which occurs when the oxygen supply to the myocardium is insufficient.The vasodilatingaction isthrough the relaxing action in blood vessels by nitrates, particularly nitric oxide. This will decrease the oxygen demand of the heart and chest pain.

Hydralazine, 1-hydrazinylphthalazine, is a direct-acting smooth muscle relaxant. It is used as an antihypertensive agent in cases like preeclampsia (a condition in pregnancy characterized by high blood pressure). Hydralazine acts by increasing cyclic guanosine mono-phosphate (cGMP) levels which causes an increase in the activity of protein kinase G (PKG). Active PKG adds an inhibitory phosphate to myosin light-chain kinase which is a protein involved in the activation of cross-bridge cycling (i.e., contraction) in smooth muscle. This results in blood vessel relaxation and causes dilation of arteries and arterioles. It also functions as an antioxidant. Itinhibits membrane-bound enzymes that form reactive oxygen species, such as superoxides. Excessive superoxide counteracts nitric oxide-induced vasodilation.

Isosorbidedinitrate and Hydralazine in combination are used with other medications to treat heart failure. As both the drugs are vasodilators, they work by relaxing and widening blood vessels so that can flow more easily to the heart. [52]

Sr. No	Drug combination	Method	Column	Mobile phase	Detection	Form	Ref. No
1)	Hydralazine Hydrochloride & Isosorbide Dinitrate	RP-HPLC	Phenomenex C ₁₈ (250×4.6 mm, 5µm)	Acetonitrile:Triethyla mine water (35:65 v/v) pH-3.5 Flow rate-1.0 ml/min	λ273	API	[53]
2)	Hydralazine Hydrochloride &IsosorbideDinitrate	RP-HPLC	$\begin{array}{c} ZorbaxC_{18} \\ (250{\times}4.6 \text{ mm}, \\ 5\mu\text{m}) \end{array}$	Orthophosphoric acid: methanol (60:40 v/v) pH-2.1 Flow rate-1 ml/min	λ278	API	[54]
3)	Hydralazine Hydrochloride &IsosorbideDinitrate	RP-HPLC	Zodiac C ₁₈ (250×4.6 mm, 5μm)	Ammonium acetate: Acetonitrile: methanol (50:30:20 v/v/v) pH-3 Flow rate-1 ml/min	λ270	API & Tablet	[52]

CONCLUSION:

This review work is a comprehensive and critical review of the analytical methods reported in the literature for the determination of selected antihypertensive combination. Overall, it should be noted that a number of reverse phase high performanceliquid chromatographic (RP-HPLC)

REFERENCE:

- 1. Martin M, Guiochon G. Effects of high pressures in liquid chromatography. J. Chromatogr. Anal. 2005;(1-2)7;16-38
- Liu Y, Lee ML. Ultrahigh pressure liquid chromatography using elevated temperature. J.Chromatogr.2006;1104(1-2):198–202
- 3. AbidiSL. High-performance liquid chromatography of phosphatidic acids and relatedpolar lipids. J. Chromatogr.1991; 587:193-203
- Hearn MT. Ion-pair chromatography on normal and reversed-phase systems. Adv. Chromatogr.1980; 18:59–100
- 5. Tripathi KD. Essentialsof medicalpharmacology.Sixth edition,Jaypee Brothers Medical Publishers (P) Ltd. New Delhi, 2003;539-540
- 6. WHO Hypertension- https://www.int/newsroo/factsheet/detail/hypertension (Accessed in November 2021)
- Combination drug- https://www.fda.gov/consumer/free-publicationwomen/high-blood-pressure#ACE-inhibitors
- Rahul RN, Joshi SS, VershaM, Shabtr N. Stability indicating RP-HPLC method for simultaneous determination of amlodipine besylate and combination in bulk and commercial dosage form. Asian J. of Pharm and life Sci.2012;2(2):280-290
- DyadeGK,SawankRL. ValidatedRP-HPLC method and unique mobile phase for the simultaneous estimation of amlodipine besylate and valsartan from solid dosage form bulk and rosuvastatin&valsartan. Asian J. Pharm Chem.2018;1(6):31-36
- Patel BS, Choudhury BG,Buch M,Patel AB. StabilityindicatingRP-HPLCmethod for simultaneous determination ofvalsartan&amlodipine from their Combination dosageform.Int. J.Chemtech. 2019;1(4):1257 – 1267
- Ali TA,Mohamed GG, AliAA, TaibFH. RP-HPLC stability indicating method for estimation irbesartan and hydrochlorothiazide in bulk and pharmaceutical dosage form. Chinese J. Anal.Chem.2016;4(1):1601-1608
- Esward M,Chary T, JunapudiS, Sharma M. RP-HPLC method development and validation for simultaneousestimation ofirbesartan&hydrochlorothiazide in pharmaceutical dosage form. Asian J. ResChem. 2012;5(4):348-352

methods. These methods constitute useful tools for pharmacokinetic and toxicological studies or for quality control tests. Moreover, some of them may support the routine therapeutic drug monitoring of these antihypertensive drugs in clinical practice.

- Ravishankar P, Rao G, Sreevidya V.Novel RP-HPLC method for simultaneous determination of irbesartan and hydrochlorothiazide in bulk and tablet dosage form. Science spectrum.2016;1(3):309-330
- Kumar GS, Ramya V, Mondal S, Kumar SP. Devlopement and validation of RP-HPLC method for simultaneous estimation of atenolol and chlorthalidone from pharmaceutical formulation. Int.Res J.Pharm.2012;3(10):215-218
- 15. Devi AL, Sree GU, Rao UM. A New RP-HPLC method development& validation for the dissolution studies of atenelol & chlor thalidone immediate Release Tablet dosage form. Int. J. Res Pharma & Chem. 2014;4(4):958 – 965
- 16. Devi RG, NagarajunK. Analytical method development and validation for the estimation of chlorthalidone and atenolol by RP-HPLC. Int.J.AdvRes and Develop.2018;3(10): 133:137
- Bonthu MG, AtmakuriLR, Jangala VR. Simultaneous determination of candesartan and hydrochlorothiazide in human plasma by LC-MS/MS.Brazilian J. PharmaSci.2018; 54(1): e17381
- Madhavi K, Navamani M, Prasanthi C.Simple analytical method for the simtameous estimation hydrochlorthazide&condesartan by RP-HPLC. Int.J.Applied Pharma.2017; 9(6):35-37
- Shrikalyani V, Madhuri T,Sareesh K, Kumar M. Simultaneous estimation of hydrochlorothiazide and condesartan in bulk and pharmaceutical dosage form by RP-HPLC PDA method. Int. J.PharmSci&Res.2018;9(1):150-157
- 20. Kotthireddy K,Rama Devi B. Stability indicating RP-HPLC method development and validation for the simultaneous estimation of condesartancilexeotiland hydrochlorothiazide in bulk and tablet dosage form. Scholar's researchlibrary.2015;7(12):114-121
- Dai SY,Qiu ST,Wu W, Fu CM. Development and validation of an RP-HPLC method for simultaneous determination of ramipril and amlodipine in tablets. J.PharmaAnal.2013;3(6):440–446
- AnandBK,Kumar GV,Sivasubramanian L. Simultaneous estimation oframipril and amlodipine in pharmaceutical dosage form by RP-HPLC method. Int.J.PharmaSci. 2014; 3(4):196-198
- Rajput PS,Kaur A,Gill NK. Simultaneous estimation of ramipril and amlodipine in bulk and tablet dosage form by RP-HPLC method. J.Applied PharmaSci. 2012;2(7):160-165

- Hammouda M, Mohamed A, Abu EE, Dina TE, Dalia R,SaadiaMA.Simultaneous Determination of enalapril and hydrochlorothiazide in Pharmaceutical Preparations Using Microemulsion Liquid Chromatography.J.Chromatogra.Sci. 2015; 53:90–96
- 25. SurydevaraV, RaoBV, Koduri T, Adimulan LR. Analytical method development and validation for simultaneous estimation of enalapril maleate and hydrochlorothiazide by RP-HPLC. Der Pharma Chemica.2014;6(1):217-223
- Foda NH,Naeem O,AbdELbary A. Simultaneous HPLC determination of Enalapril and Hydrochlorothiazide in human plasma and its pharmacokinetics application. J. Pharm Sci&Res.2012;2(11):786-794
- 27. Keerthi J,SubramaniyanD. Analytical method development and validation for the simultaneous estimation of enalapril and hydrochlorothiazide by RP-HPLC method in bulk and pharmaceutical dosage form.J.PharmAnal.2019;1(12):323-332
- 28. Prameela KL, Veni R, SatyanarayanaP, Babu BH. Stability indicating reverse phase high performance liquid chromatographic method with photodiode array detection for the simultaneous quantification of quinapril and hydrochlorthiazide in bulk and tablet dosage forms. Asian J.Chem. 2018;30(4):873-878
- 29. Rani GS, Gandhi MB,Kumar GM,Rekha M,PullamKR. A new RP-HPLC method for simultaneous estimation of quinapril and hydrochlorothiazide in pharmaceutical dosage form. World J.PharmSci. 2013;2(6):6220-6234
- AltunsoyS, Bonzal B.Validation of liquid chromatography method for simultaneous determination of quinapril and hydrochlorothiazide in pharmaceutical dosage form. Turk j.Pharm Sci. 2013;10(2):255-262
- Megala K, Chenthilnathan A,Sathishbabu A. Validated RP-HPLC method for simultaneous determination of telmisartan and hydrochlorothiazide in pharmaceutical formulation.Int. J.PharmRes & Allied Sci.2014;3(3):33-40
- Wankhede SB,TajaneMR,Gupta KR,Wadodkar SG. RP-HPLC method for simultaneous estimation of telmisartan and hydrochlorothiazide in tablet dosage form. Indian J.PharmaSci. 2007;69(2):298-300
- 33. Mukhopodhyay S, Kadam K,Sawant L, Nachane D,PanditaN. Simultaneous determination of related substances of telmisartan and hydrochlorothiazide in tablet dosage form by using RP-HPLC method. Indian J.PharmaSci. 2011;3(3):375-383
- 34. Aher SS, Saudagar RB,Kothar H. Devlopement and validation of RP-HPLC method for simultaneous estimation of azilsartanmedoxomil and chlorthalidone in bulk and tablet dosage form.Int.J. Current PharmaRes.2018;10(6):22-23
- Naazneen S,Sridevi A. Stability indicating RP-HPLC method for the simultaneous estimation of azilsartanmedoxomil and chlorthalidone in solid dosage form. Int.J.Pharmacy&PharmSci.2014;6(6):237-242
- 36. Sohani SK,Kumar R,Akhtar M,Chanda R, Chawala G. Development and validation of RP-HPLC method for simultaneous estimation of azilsartan and chlorthalidone in bulk form and formulation using quality by design. Int.J.Pharm &Sci.2016;8(2):267-271
- Huang T,He Z, Yang B,Shao L,Zheng X,Duan G. Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. J.Pharm&BiomedAnal.2006; 41:644–648
- Veerubhotia K, Walker RB. Development and validation of stability indicating RP-HPLC method using quality by design for estimation captopril. Indian J. of PharmSci. 2019;81(1): 45-56
- Ivanovic D, Medenica M, Malenovic A, Jancic B. Validation of the RP-HPLC method for analysis of hydrochlorothiazide and captopril in tablet. AccredQual Assur.2004; 9:76-81

- 40. HossenA,Haque A,Dewan I,Kabir H, Hossain K, Islam A. Development and validation of RP-HPLC method for the simultaneous estimation of hydrochlorothiazide and losartan potassium in tablet dosage form. DhakaUniv. J. Pharm Sci.2011;10(1):35-42
- Argekar AP,Sawant JG. A gradient reversed phase HPLC method for simultaneous determination of hydrochlorothiazide and losartan potassium. Analytical Later.2008;33(5): 869-880
- SibelA, Ozkan. Simultaneous determination of losartan potassium and hydrochlorothiazide from tablet and human serum by RP-HPLC. J.Liquid Chromatogr.&RelatedTechno.2007;24(15):2337-2346
- 43. Naikini P,Akula A, Ajitha A, RaoMV. RP-HPLC method development and validation for the simultaneous estimation of amlodipine and atenolol in bulk and tablet dosage form.Int.J. Pharmacy &PharmSci.2014;6(1):391-393
- Phillip B, Joseph J,Pandian M.RP-HPLC development and validation for simultaneous estimation of atenelol and amlodipinebesylate in pharmaceutical dosage form. Int.J. PharmSci&Res.2016;4(1):345-355.
- 45. HaqueA,Nazin A.Development and validation of RP-HPLC method for the simultaneous estimation of atenolol and amlodipine in tablet dosage form.Dhaka Univ.J. of Pharm.Sci.2010;9(2):131-138
- 46. GanipisettyLA,Dachinamoorthy D, Rao VL. Stabilityindicating RP-HPLC method development and validation of simultaneous estimation of trandolapril and verapamil hydrochloride with forced degradation studies in bulk and commercial products.Int.J.PharmaResSchol.2015;4(4):1-8
- 47. Srilatha, Saikiran G, HemalathaR. Reverse phase high performance liquid chromatography method development and validation for the simultaneous determination for verapamil and trandolapril in pure form and their marketed combined pharmaceutical dosage form. Int. J. Farmacia. 2020;7(4):236-256
- 48. LaxmiPM, Geotha V.Devlopment and validation of RP-HPLC method for the simultaneous estimation of verapamil hydrochloride &trandolapril in bulk and pharmaceutical dosage form. Asian J.PharmAnal&MediChem.2016;4(1):38-46
- 49. Hema P, Chandra PK, Rao BA,Kumari AS. Chemometric assisted RP-HPLC quantitative estimation and validation of hydrochlorothiazide and triamterene in tablet dosage form. Int. J. Pharmacy and AnalRes.2017;6(3):442-448
- 50. SathyanaryanaP,Balaji, AnanthKR, Lakshmi K, Ashok P. Analytical method development and validation of simultaneous estimation of hydrochlorothiazide and triamterene in combined tablet dosage form by RP HPLC. Int. Res.J.Pharmacy &Pharmaco.2018;6(1):48-54
- 51. Margaryan T,Mikayelyan A,Zakaryan H,Armoudjian Y.Simultaneous determination of triamterene and hydrochlorothiazide in human plasma by liquid chromatography tandem mass spectrometry &its application to abioequivalencestudy. SN Applied Sci.2019; 1:653
- NeelimaK, RajendraY. Analytical method development and validation for simultaneous estimation of hydralazine, isosorbidedinitrate in bulk and tablet formulation by RP-HPLC. Indian J.Pharm.Sci&Res.2014;5(4):1290-1294
- Patel VS, Pandya SS. A review onanalytical methods for estimation ofisosorbridedinitrate&hydralazinehydrochloride in bulk and pharmaceutical dosage form. Int.J.Chem.TechRes. 2017;10(10):92-94
- 54. MastanammaSK, Saidulu P,Sravanthi A,Raijtha E. Stability indicating validated RP-HPLCmethod forsimultaneousdetermination of hydralazinehydrochloride &isosorbidedenigrate in bulk &pharmaceutical dosage form. Int. J. Pharm Sci.2018;40(1):141-148