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A B S T R A C T 
 

In this study we have assessed the use of blue light (peaking at 415 nm), blue light (approximately 700 nm), and a blue and red 
light mixture (peaking at 415 and 660 nm) in the treatment of psoriasis, acne vulgaris, diabetes, cancer, actinic keratosis, seasonal 
affective disorder, and Candida albicans infections. The use of light with wavelengths between 400 and 1100 nm to encourage 

tissue repair, lower inflammation, and enhance analgesia is known as photobiomodulation (PBM). Red and near-infrared (NIR) light 
have long been used therapeutically, but new research suggests that blue and green light, among other visible spectrum 
wavelengths, may also be helpful.  The purpose of this review is to assess the research on the possible therapeutic benefits of PBM, 
with a focus on the effects of red and blue light. This review emphasizes how, depending on the light's wavelength, PBM can have a 

wide range of effects on the body's various chromophores. The necessity of disclosing exposure and treatment data is still 
emphasized because doing so will allow for direct comparisons between trials and, ultimately, the identification of PBM's full 
potential. 
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INTRODUCTION: 

 

ith the goal of producing a positive outcome, light 

treatments employ light with various 

characteristics (wavelength, intensity, coherent or 

incoherent light) [1]. Blue light, red light, and a mix of blue 

and red light are among the light-based acne therapies [2]. 

Light is vital to human health and initiates a variety of 

physiological processes [3]. The proportions of the sun's 

electromagnetic energy that reach the earth are separated into 

three primary zones [4]. These areas include visible light 

(400–760 nm), infrared light (760–1000 nm), and ultraviolet 

(UV) light (280–400 nm). Because of the variety of 

biological photoacceptors [5], UV radiation's photoreactivity, 

and the cell-specific reactions [6] it triggers, its effects on 

mammalian cells have been thoroughly studied [7]. It has 

been demonstrated that red and near-infrared (NIR) 

wavelengths are advantageous, and new research suggests 

that other visible spectrum wavelengths, such as blue light 

(400–500 nm), may also be advantageous. Numerous bacteria 

are less likely to become resistant to blue light treatment, 

making it a good substitute for antibiotic therapy, according 

to reports of the antibacterial activity and susceptibility of 

blue light on multiple strains of the same bacterium [8]. The 

sun is the primary source of blue light, which is present 

throughout our surroundings [9]. Daytime exposure to blue 

light is essential for maintaining the balance of our biological 

needs and has both visual and nonvisual effects on our bodies 

and minds, primarily regulating human behavior and 

circadian rhythm [10,11]. Between 400 and 700 nm, visible 

light makes up about half of the sunshine that reaches the 

earth's surface. Flash lamps, light-emitting diodes, and lasers 

are additional sources of visible light. Photoreceptive 

chromophores (such as melanin, heme, and opsins) absorb 

photons from visible light, which activates and supplies 

energy to chromophores, changing skin function [12]. A 

certain wavelength of light combined with a photosensitizer 

is used in photodynamic therapy (PDT), a therapeutic 
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approach. To verify the effectiveness of PDT and its potential 

as an alternative treatment, this study used blue light in 

addition to red light, which is frequently employed in human 

medicine, to the microorganisms that cause skin infections 

using photosensitizers [13]. PDT works by activating a 

photosensitizing agent with visible light, which then 

combines with oxygen to produce a cytotoxic product [14].

 

 

Figure 1: Electromagnetic radiation spectrum. UVR, VL, and IR are optical radiation. VL can be divided by color: blue/violet (400-500 nm), green (500-565 
nm), yellow (565-590 nm), orange (590-625 nm), or red (625-700 nm). Similarly, UVR is separated into separate spectra: UVA (320-400 nm), UVB (290-320 

nm), Ultraviolet-C (200-290 nm), and extreme (EUV; 10-120 nm). IR can be subdivided into infrared-A (near-IR; 700-1440 nm), IRB (mid-IR; 1440-3000 nm), 

and IRC (far-IR; 3000 nm-1 mm) wavelengths. Spectral boundaries are not discrete, and there is an overlap in the biologic effects between adjacent forms of 

EMR [12]. 

Sources of Red and Blue light: 

 

Figure 2: Diagram of natural and artificial visible light sources [12]. 

Potential mechanisms of blue-light treatment: 

It has been shown that by momentarily binding the light-

sensitive ligand optovin, short-wavelength BL selectively 

activates zebrafish TRPA1 cation channels [15]. The same 

wavelength of low-intensity light causes pain on the skin of 

healthy volunteers [16]. Furthermore, BL up to 460 nm in 

wavelength may activate human TRPA1 and pre-sensitized 

TRPV1 channels in transfected HEK 293 T cells [16,17]. The 

activation of TRPA1 and TRPV1 channels, located at 

unmyelinated C and small myelinated Ad fibers, results in the 

production of proinflammatory cytokines [18,19]. 

Vasodilatation and protein extravasation, which are crucial 

events in nociceptor sensitization and neurogenic 

inflammation, are brought on by the neuropeptide’s substance 

P and calcitonin gene-related peptide [16,20]. Consequently, 

TRPA1 and TRPV1 have been suggested to be important in 

neurogenic inflammation and chronic pain [16,21-23]. It is 

interesting to note that reactive oxygen species, which also 
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activate TRPA1 (16), cause photosensitization and an 

increased pain response to BL treatment. In a human 

surrogate model of chronic pain, we have discovered that 

extended illumination has an antinociceptive effect, despite 

the fact that short-term BL stimulation has been demonstrated 

to be nociceptive. On the one hand, this discovery might be 

explained by the excitation state of the nociceptive fibers. 

Similar to chronic pain disorders, electrical stimulation 

causes nociceptive fibers to constantly depolarize. If BL light 

further activates previously sensitive TRPA1 and TRPV1 

cation channels, it may cause hyperpolarization of activated 

nociceptive fibers, which could result in cation outflow 

instead of influx. Long-term BL illumination may 

alternatively desensitize nociceptive fibers, as has been 

shown for a number of TRP agonists [24-27]. Lastly, it has 

been shown that BL increases the antioxidative capacity of 

human skin fibroblasts, which may facilitate further 

antinociceptive effects [28,29]. The optimal level and 

duration of BL's nociception-affecting effects, especially in 

people with chronic pain, require more investigation [30]. 

Potential mechanisms of red-light treatment  

Primary mechanisms of PBM: According to the Grotthuss–

Draper law, often known as "The First Law of 

Photochemistry," a system's capacity to absorb light is a 

necessary condition for photochemical reactions. This section 

then reviews the literature on the most often proposed cellular 

photoacceptors (chromophores) that are thought to mediate 

the biological effects in PBM. We address the possible 

photoacceptors responsible for green and blue light 

wavelength transduction [31]. 

Secondary mechanisms of PBM: Examining the possible 

explanations for the primary PBM processes reveals that 

several routes converge on the production of the same 

signaling molecules, including ROS. Thus, this review 

portion evaluates the possible influence of PBM on ROS-

related pathways. Note that this assessment evaluates the 

impact of PBM on multiple downstream targets. PBM may 

control a varying number of these targets, depending on the 

light's wavelength, the amount to be taken and in vitro/in 

vivo structure. This is also true for the primary mechanisms 

of PBM [31]. 

Therapeutic Applications: 

Acne: Clinical investigations showed that BL and RL from 

devices at 400–445 nm and 625-700 nm, respectively, 

improved mild to moderate acne by decreasing Cutibacterium 

acnes colonization, pore size, and inflammation [32-34,12].

 

 

                    Figure 3: (A) Before treatment. (B) After the end of red and blue light treatment (at second week). (C) After RF treatment (at tenth week). (D) 

 after 2 times of IPL treatments (the 18th week). (E) After 4 times of IPL treatments (the 26th week) [35]. 

 

Blue light can rapidly destroy C. acnes through a chemical 

mechanism that produces singlet oxygen, which has anti-

inflammatory qualities and reduces acne inflammation 

damage [36]. Red light can reduce or even eliminate 

erythema, which helps to restore skin smoothness and avoid 

postacne scarring, while also reducing inflammation and 

promoting collagen synthesis and tissue regeneration [37, 

35]. Phototherapy of acne vulgaris employing a blue light-

emitting source more suitable to the absorption spectrum of 

porphyrins might provide a therapeutic response with a lower 

irradiation dose and avoid the potential risks of UV radiation 

[38]. Visible light therapy is a noninvasive, safe, and 

effective treatment for acne vulgaris [39]. 

Cancer: Protoporphyrins preferential uptake and 

accumulation in malignant tissue is exploited by blue light 

cystoscopy (BLC), a photodynamic diagnostic technique. 

BLC, sometimes referred to as the fluorescence-based 

photodynamic diagnostic method, takes use of the 

preferential uptake and accumulation of protoporphyrins in 

neoplastic tissue [40,41,42]. BLC significantly increases the 

detection rate of CIS and small Ta lesions that WLC missed, 

according to a number of studies and subsequent meta-

analyses [40-44]. Furthermore, residual tumor rates are nearly 

tripled when BLC is utilized in place of WLC alone [42-

46].Photodynamic therapy (PDT) has proven to be an 

effective treatment for dermatological malignancy [47, 48]. 

Actinic keratosis (AK): The clinical hallmark of actinic 

keratosis (AK), a kind of in situ squamous cell carcinoma 

(SCC) that arises in areas of the skin that are frequently 

exposed to the sun, is erythematous, scaly, or crusty patches 

of skin [49]. Actinic keratosis (AK), which develops on skin 

exposed to the sun for a long time, is one of the most 

common disorders doctors treat [50]. Topical photodynamic 

treatments (PDT) are strongly recommended for patients with 

confluent AK lesions or field cancerization because untreated 

lesions can progress to invasive SCC [49,51]. Recent 

recommendations state that PDT is a preferred treatment 

option because of its exceptional efficacy and remarkable 

cosmetic outcomes [52-54]. Photodynamic therapy (PDT) has 

been approved by the Food and Drug Administration (FDA) 

for the spot treatment of actinic keratoses (AKs) using either 

aminolevulinic acid (ALA) or methyl aminolevulinate 

(MAL), which is converted to ALA in the skin [55]. Blue 

light (417 +- 5 nm) and red light (630 +-2 nm) are approved 
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for use with ALA and MAL, respectively, despite the fact 

that protoporphyrin IX (PpIX), the photosensitizing 

metabolite of ALA produced in the epidermis after topical 

application of the prodrug, is activated by both wavelengths 

as well as broadband visible light and sunlight [55,56]. 

Psoriasis: Innovative medications are still needed to treat 

psoriasis. The ineffectiveness and cumulative toxicity of 

topical treatments, as well as those of phototherapy and 

systemic treatments, significantly restrict the available 

therapeutic options. As a safe alternative to ultraviolet (UV) 

phototherapy for the treatment of inflammatory skin 

conditions, visible light phototherapy has drawn increased 

attention from dermatologists in recent years. The absorption 

of visible light or UV radiation by skin chromophores is the 

primary vehicle via which light'sbiological effects on the skin 

start [57]. 

  

 

Figure 4: Before (a) and after (b) treatment photos of psoriasis plaques treated with blue (right leg) and red light (left leg) [57]. 

Candida albicans Infections: The most prevalent fungus is 

Candida albicans [58-60]. Even while fungal infections have 

become more common over the past few decades, there are 

currently not many effective antifungal drugs on the market 

[61]. Topical antifungal drugs like clotrimazole are the best 

option for treating cutaneous C. albicans infections. 

However, there is evidence of clotrimazole resistance in 

Candida albicans [62,63], and antifungal drug resistance may 

be increasing [64,65]. Therefore, there is an urgent need to 

discover new antifungal therapy techniques. A harmless dye 

known as a photosensitizer (PS) can be preferentially 

localized in specific tissues or cells, according to the theory 

underlying photodynamic treatment (PDT). The cells that 

have bound the PS may be killed by reactive oxygen species 

(ROS), which are produced when harmless visible light 

activates the PS. Numerous published studies have 

demonstrated that PDT is highly effective at inactivating 

fungi in vitro [66-68]. Additionally, it is believed that 

bacteria becoming resistant to PDT is an uncommon 

occurrence because PDT is typically a multitarget process, 

which distinguishes it from the bulk of other antifungal drugs 

[69,70]. 

Seasonal affective disorder (SAD): A decrease in mood in 

the fall and/or winter, followed by a spontaneous remission in 

the spring or summer, is the hallmark of the illness known as 

seasonal affective disorder (SAD). The DSM-IV classifies 

seasonal major depression with recurrent episodes (DSM-

IVR) as a subtype of SAD. However, compared to the usual 

symptoms of decreased appetite and insomnia that are 

normally observed in significant depression, SAD patients 

tend to display more atypical symptoms, such as hyperphagia 

and hypersomnia. While the exact origin of SAD is yet 

unknown, seasonal variations in the photoperiod seem to be 

linked to mood and symptom fluctuations. Indeed, it has been 

proposed that remission is brought on by an increase in light 

exposure in the spring and summer, whereas SAD is brought 

on by a decrease in light exposure in the fall and winter. 

Bright light (BL) administration was consequently 

recommended and approved as the recommended treatment 

for those with SAD due to its proven therapeutic 

effectiveness [71]. Bright light exposure is one of the 

mainstay treatments for seasonal affective disorder [SAD] 

and severe depression. It is unclear what biological 

mechanism strengthens the beneficial effects of bright light 

exposure, despite the fact that this effective treatment has 

been utilized for decades. The optimal wavelength of light for 

therapy is also a matter of debate. While the traditional 

approach uses full-spectrum light, several studies suggest that 

the key wavelengths are in the blue or green light spectrum. 

Melanopsin-containing intrinsically photosensitive retinal 

ganglion cells (ipRGCs) are thought to be the mechanism of 

action of light therapy. These photoreceptors were shown to 

be highly sensitive to blue light wavelengths (460 and 484 

nm), which are crucial for regulating biological clocks. If 

ipRGCs are the therapeutic target of light treatment, then it is 

acceptable to propose that the effects of blue light 

administration will be similar to those of high illuminance 

wide-spectrum light [72]. 
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Diabetic Wound Healing: PBM, formerly known as low-

level laser (or light) therapy (LLLT), is a non-invasive, non-

thermal treatment technique that involves exposing living 

cells and tissue to light at particular wavelengths. Light-

emitting diodes, or LEDs, and lasers are typically employed. 

Numerous photochemical and photophysical activities are 

triggered when the photon energy is absorbed by the cells. 

The electromagnetic spectrum wavelengths known as "light" 

are UVC (200–280 nm), UVB (280–320 nm), UVA (320–

400 nm), visible (400–750 nm), near infrared (NIR, 750–

1200 nm), and mid/far IR (1200–10,000 nm) (73).Recent 

studies indicate that blue light (400–500 nm) and other 

visible spectrum wavelengths may be beneficial in addition to 

the advantages of red and near-infrared wavelengths. 

According to studies, light may effectively destroy bacteria 

(including Gram-positive, Gram-negative, and mycobacteria), 

viruses (including DNA and RNA), fungus (including 

filamentous fungi and yeasts), and parasites. Furthermore, the 

bacteria's resistance to antibiotics does not seem to affect the 

antimicrobial's effectiveness, nor does it produce resistant 

germs after repeated sub-lethal light treatments [73]. While 

blue light has been found to have a stronger antibacterial 

effect, red or near-infrared light radiation promotes tissue 

regeneration [74]. This could be helpful in the fight against 

infected diabetic wounds [75]. 

  

 

Figure 5: The mean of blood sugar (mg/dl) before and after red/blue laser treatments in seven repetitions [76]. 

Advantages: 

 By exposing only, the damaged areas and protecting the 

unaffected ones, the risk of both acute side effects like 

erythema and long-term skin cancer is decreased [77]. 

 The treatment can only be administered twice or even 

once a week, and each session minutes short [78]. 

 Because delivery device is portable and the focused 

phototherapy equipment requires less space, children can 

administer it with ease [77]. 

 PDT is used as a radical or palliative treatment for a 

variety of cancers and has strong disease specificity and 

little side effects when compared to conventional and 

alternative oncological treatments like radiation therapy, 

chemotherapy, or surgery [79]. 

Disadvantage: 

 They are more expensive, which is a distinct disadvantage 

[77]. 

 They are not enough to treat huge areas given the time 

and cost of treatment. Lesions should not be used if they 

encompass more than 10% of the body [77]. 

 Vitamin D deficiency is a sign of photosensitivity [79]. 

 Eliminating malignant (disease/cancer) cells is the main 

goal of PDT. PDT influence is also seen in the cells that 

surround the tumor. Only a few verified studies show that 

PDT affects healthy cells as well. However, it is 

undeniable that evaluating normal cells after 

photoreaction might contribute to a better understanding 

of the PDT mechanism and principle [79]. 

CONCLUSION: 

In recent years, there has been a lot of interest in the benefits 

of using laser light as a therapeutic approach for many 

medical issues, including wound treatment techniques. There 

have been reports of a variety of biological effects after 

exposure to light, albeit these are still up for debate. Although 
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the exact mechanism of action for blue light-induced 

cytotoxicity is yet unknown, general mechanisms of light–

cell interactions are understood. Research on the effects of 

HEVL in normal cells has garnered a lot of attention when 

attempting to understand the effects of prolonged, low-

intensity exposure to blue light in relation to electronic device 

screens, curing dental materials, or the treatment of normal 

retinal, oral, and skin cells. It's possible that endogenous 

chromophores work similarly to a photodynamic therapy 

(PDT) agent in healthy cells. 
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