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A B S T R A C T 
 

The rapid advancement of Artificial Intelligence (AI) has revolutionized drug discovery and development, reshaping the 
pharmaceutical landscape with its computational power and data-driven approaches. AI-driven methodologies, including deep 
learning, machine learning, and neural networks, have significantly expedited target identification, lead optimization, and drug 

repurposing, thereby reducing both time and cost associated with traditional drug development. Virtual screening, molecular 
docking, and predictive modelling have enabled more precise drug-target interactions, enhancing therapeutic efficacy and 
minimizing potential adverse effects. Moreover, AI's integration into chemical synthesis, polypharmacology, and biomarker 
discovery has expanded its applications in personalized medicine. This review explores the latest trends and applications of AI in 

drug discovery, emphasizing its role in optimizing drug design, predicting novel therapeutics, and improving preclinical and clinical 
trial success rates. While AI has demonstrated remarkable potential, challenges such as data bias, interpretability, and regulatory 
concerns remain critical barriers to its full-scale implementation. Addressing these challenges will be essential to unlocking AI’s 
transformative capabilities in revolutionizing modern drug development. 
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INTRODUCTION 

he traditional drug discovery process is a complicated 

and demanding task, often taking up to 15 years and 

costing between $1 to $2 billion for each drug that 

gets approved. This is mainly because of increasing failure 

rates and lengthy clinical trial timelines.
[1]

 Even with 

substantial resource investments, nearly 90% of drug 

candidates fail after progressing to phase-I clinical trials. 

Reaching phase-I clinical trial after extensive preclinical 

optimization is regarded as a major achievement for both 

pharmaceutical companies and academic institutions.
[2]

To 

improve the success rate of lead compounds in clinical trials, 

large-scale computational screening and docking techniques 

have been utilized. However, these methods face challenges 

like inefficiency and inaccuracy.
[3]

 To address these issues, 

deep learning (DL) and machine learning (ML) algorithms, 

which are part of artificial intelligence (AI), have been 

recognized as promising solutions.
[4]

 These AI tools can 

predict macrosystem properties with high precision while 

maintaining low computational costs. As a result, chemical 

and biological scientists have increasingly embraced AI 

algorithms in the drug discovery process. AI technologies, 

such as machine learning (ML) and natural language 

processing, have the potential to speed up and enhance this 

process by allowing for more efficient and precise analysis of 

large data sets.
[5]

 Recent successes in using deep learning 

(DL) to predict the effectiveness of drug compounds with 

high accuracy have been reported
[6]

. These and other research 

efforts demonstrate AI's potential to enhance the efficiency 

and effectiveness of drug discovery.Over the past ten years, 

drug discovery has experienced significant changes, largely 

fueled by the rapid advancements in artificial intelligence 

(AI). Common AI applications in drug discovery include 

virtual screening, de novo drug design, retrosynthesis and 
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reaction prediction, and de novo protein design.
[7-9]

 To 

support these AI applications, various AI techniques are 

utilized, with model architectures transitioning from 

traditional machine learning models to advanced deep neural 

networks, including convolutional neural networks, recurrent 

neural networks, graph neural networks, transformers, and 

more. 

This extensive process, crucial for bringing effective 

medications into clinical use, includes multiple stages such as 

target identification, lead compound discovery, optimization, 

thorough preclinical testing, and careful clinical trials.

 

 

Figure 1: The role of AI in pharmaceutical research and drug development 

ARTIFICIAL INTELLIGENCE IN DRUG 

DISCOVERY: 

AI in Drug Designing 

In the realm of drug design, artificial intelligence (AI) plays a 

pivotal role in improving the identification of promising lead 

compounds, thereby significantly speeding up the drug 

development process.
[10]

 This progress is facilitated by AI's 

capacity to evaluate a diverse range of molecular structures 

and forecast their potential binding interactions, which 

simplifies the journey from initial concept to clinical 

application. The core objective of drug design is to uncover 

small molecules that meet essential criteria, such as 

therapeutic effectiveness, a safe profile, appropriate chemical 

and biological characteristics, and the novelty required to 

obtain intellectual property protection for commercial 

success
[11,12]

. Although computational methods have 

dramatically changed the landscape of drug design, 

traditional approaches still face issues like lengthy 

preparation times, substantial computational expenses, and 

inconsistent dependability. AI emerges as a powerful tool to 

overcome these obstacles, boosting the efficiency and impact 

of computational strategies in drug discovery. 

 A crucial aspect of drug design focuses on studying protein 

structures, as many diseases stem from protein dysfunction. 

Structural drug design seeks to identify small molecules that 

can selectively bind to protein targets. Traditionally, 

predicting the 3D structures of proteins has been expensive, 

time-intensive, and often inaccurate 
[13]

. However, AI, 

particularly deep learning and feature extraction tools, has 

transformed this field by enabling precise predictions of 

secondary protein structures and mapping protein contacts. 

This enhances the understanding of the structure-sequence 

relationship and aims to improve 3D protein structure 

predictions, facilitating the study of protein-protein 

interactions (PPI) and advancing structural drug design. AI's 

integration into this process marks a significant advancement, 

promising faster, more cost-effective, and successful drug 

development.

 

 

Figure 2: Benefits of AI in Drug Discovery 
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Prediction of the Target Protein: 

 Predicting the three-dimensional (3D) structure of target 

proteins with precision is a vital step in structure-based drug 

design and discovery. Machine learning and deep learning, 

both subsets of artificial intelligence (AI), have become 

crucial in tackling this challenge. The process of AI-driven 

protein structure prediction is built on gathering extensive 

data on protein sequences and structures from various 

sources. These datasets train AI models to recognize intricate 

patterns that connect amino acid sequences to their 3D forms 
[14,15]

. By employing advanced computational methods, 

particularly deep learning, AI models have demonstrated 

remarkable success in identifying complex patterns within 

protein data. These models carefully analyze features such as 

amino acid properties, structural motifs, and evolutionary 

history to predict 3D protein structures from sequences 
[16,17]

. 

A significant milestone in this field is AlphaFold, developed 

by Google DeepMind, which predicts protein structures by 

examining the distances between amino acids and the angles 

of peptide bonds. In a notable evaluation, AlphaFold 

accurately predicted 25 out of 43 protein structures, 

showcasing its potential to revolutionize structure-based drug 

discovery. This advancement underscores AI's ability to 

improve the accuracy, speed, and efficiency of drug design 

efforts.
[18]

 

Prediction of Drug Protein Interactions: 

The prediction of drug-protein interactions (DPIs) is a 

fundamental aspect of advancing effective drug development, 

greatly enhanced by the integration of AI. Through the 

application of advanced computational techniques, such as 

machine learning and deep learning, AI enables the analysis 

of extensive biological and chemical datasets 
[19]

. These 

datasets, carefully organized into comprehensive databases, 

include detailed information on well-documented DPIs, 

covering molecular structures, chemical properties, and 

experimental binding affinities.The study of drug-protein 

interactions (DPIs) is critically important, particularly as the 

pharmaceutical industry evolves with the introduction of new 

therapies and the repurposing of existing drugs for novel 

clinical uses 
[20]

. Traditional biological methods for 

developing new drugs are time-consuming and expensive, 

often taking 10–20 years and requiring significant financial 

resources. As a result, computational approaches, including 

AI, have become essential tools for accurately predicting 

DPIs, speeding up the development of advanced prediction 

methods. In recent years, the transition from traditional 

machine learning to more advanced deep learning techniques 

has transformed DPI prediction. Deep learning models, such 

as deep neural networks (DNNs), convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs), 

have shown superior accuracy compared to earlier methods, 

driving further research in this area.
[21-23]

.Accurately 

predicting ligand-protein interactions is vital for 

understanding therapeutic effectiveness, facilitating drug 

repurposing, and reducing risks related to polypharmacology. 

AI has proven highly effective in achieving precise 

predictions of these interactions, leading to improved 

treatment outcomes. For example, Wang et al. created a 

model using the support vector machine (SVM) approach, 

trained on 15,000 protein-ligand interactions, which 

successfully identified nine new compounds and their 

interactions with four key targets based on protein sequences 

and small molecule structural features. 

AI in de Nova Drug Design: 

De novo drug design involves the development of completely 

new drug-like molecules from the ground up, without 

depending on existing compounds or predefined templates. 

This method offers significant potential for exploring the 

expansive chemical space, which is believed to encompass 

between 10^60 to 10^100 drug-like molecules (Jiménez-Luna 

et al., 2021). Artificial intelligence (AI), utilizing machine 

learning and deep learning technologies, has become a crucial 

tool in overcoming the challenges associated with de novo 

design, heralding a transformative shift in the discovery of 

new therapeutic agents 
[24]

. Conventional de novo design 

approaches often encounter obstacles such as complex 

synthesis pathways and the challenge of predicting the 

biological activity of newly created molecules. AI aims to 

address these limitations by employing advanced 

computational models and algorithms to analyze vast 

chemical and biological datasets, identifying patterns that 

link molecular structures to their pharmacological properties.

 

Figure 3: De-Nova Drug design through Artificial Intelligence. 

Generative AI models, including variational autoencoders 

(VAEs) and generative adversarial networks (GANs), have 

proven highly effective in this field. These models are 

capable of learning the underlying patterns in molecular 

representations and producing new chemical compounds with 

specific, targeted properties
[25-27]

. 

The use of AI in de novo drug design goes beyond the 

creation of small molecules. Advanced methods such as deep 

neural networks (DNNs) and Monte Carlo tree searches 

(MTCS), integrated with symbolic AI, have been utilized for 

predicting chemical reactions and elucidating mechanisms, 

allowing for faster exploration of chemical space compared 
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to traditional methods.
[28,29]

 Additionally, AI has 

demonstrated potential in predicting protein-protein 

interactions (PPIs), an area with significant therapeutic 

potential that remains largely unexplored. By analyzing PPI 

interfaces using AI-driven approaches, researchers can 

uncover critical structural insights that guide the design of 

new therapeutic agents targeting these interactions. Despite 

notable advancements, fully harnessing the capabilities of AI 

in de novo drug design continues to be an active research 

focus. Key challenges include accurately predicting the 

bioactivity of novel molecules, generating compounds that 

are synthetically feasible, and efficiently navigating the vast 

chemical space 
[30,31]

. Nevertheless, the incorporation of AI 

techniques into de novo drug design marks a revolutionary 

shift, holding promise for accelerating the discovery of 

innovative, safe, and effective therapeutic agents. 

AI in Drug Repurposing: 

Drug repurposing, also known as drug repositioning or 

retasking, refers to the process of discovering new therapeutic 

uses for drugs originally developed for different medical 

conditions
[32]

. This strategy has gained considerable attention 

due to its ability to speed up the drug development timeline, 

lower costs, and deliver treatments to patients more quickly 

than conventional drug discovery methods 
[33, 34]

.AI has 

emerged as a critical tool in drug repurposing, leveraging its 

advanced analytical capabilities to process vast datasets, 

including drug databases, clinical records, and genomic 

information. This enables the identification of new 

relationships between existing drugs and potential disease 

targets 
[35]

. AI facilitates drug repurposing through various 

methods, such as network-based, feature-based, and matrix-

based approaches [36]. A major advantage of AI-driven 

repurposing is the ability to bypass early-phase clinical trials 

and toxicological evaluations, as the safety profiles of these 

drugs are already established from prior research. This 

efficiency allows repurposed drugs to advance directly to 

Phase II trials for new indications, significantly shortening 

development timelines and reducing costs 
[37-38]

.AI 

techniques, including deep neural networks (DNNs) and 

generative adversarial networks (GANs), have demonstrated 

significant potential in classifying complex drug mechanisms, 

predicting pharmacological properties, and designing new 

drug molecules 
[39-40]

. DNNs can categorize drugs based on 

their functional class, efficacy, therapeutic use, and toxicity, 

while GANs can create novel molecular structures inspired 

by real-world data, paving the way for innovative drug 

design
[41,42]

. Reinforcement learning, another AI approach, 

offers a distinct advantage by not relying heavily on pre-

existing datasets. Instead, these algorithms can identify 

strategic patterns in drug molecule design, potentially leading 

to the development of drugs with fewer side effects. 

Moreover, AI algorithms can be trained to distinguish 

between cardiotoxic and non-cardiotoxic drugs, further 

improving the safety of repurposed medications [43]. 

Although AI holds immense promise for drug repurposing, 

several challenges persist, such as the need for extensive 

computational power to handle and analyse large-scale 

networks. Furthermore, innovative approaches, like 

developing machine-learning models centred on drug side 

effects, could open new avenues for repurposing by 

identifying specific areas worthy of deeper exploration[44]. 

The integration of AI into drug repurposing marks a 

transformative shift in drug discovery, with the potential to 

accelerate the development of new therapies, reduce costs, 

and fast-track the availability of effective treatments, 

particularly for complex and rare diseases that currently lack 

sufficient treatment options. 

AI in Virtual Screening: 

Virtual screening is a key computational approach in 

contemporary drug discovery, facilitating the swift 

assessment of extensive chemical libraries to pinpoint 

potential hit compounds for a specific biological target 
[45-46]

. 

This method generally involves a series of computational 

steps designed to filter and rank molecules with the desired 

biological properties from large collections of small 

molecules
[47]

. Virtual screening techniques are broadly 

divided into two categories: structure-based virtual screening 

(SBVS) and ligand-based virtual screening (LBVS)
[45]

. SBVS 

relies on the three-dimensional structure of the target protein 

to identify molecules that can bind effectively to its active 

site, often using molecular docking simulations. On the other 

hand, LBVS uses a set of known active ligands to find similar 

compounds based on various molecular features, such as two-

dimensional fingerprints, pharmacophore models, or three-

dimensional shape similarities 
[45-48]

 

. 

 

Figure 4: Process of Virtual Screening Using Artificial Intelligence. 
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Artificial intelligence (AI), especially machine learning and 

deep learning, has become transformative tool in boosting the 

efficiency and precision of virtual screening efforts. AI 

algorithms are capable of analyzing and extracting 

meaningful insights from the massive datasets produced 

during virtual screening, such as molecular structures, 

binding affinities, and target-ligand interactions
[45]

. In 

structure-based virtual screening (SBVS), AI techniques like 

support vector machines (SVMs), random forests (RFs), and 

boosting algorithms have been used to model complex, non-

linear relationships between molecular features and target-

ligands interactions, surpassing traditional scoring methods 
[45]

. Deep learning models, including convolutional neural 

networks (CNNs), have demonstrated exceptional 

performance in virtual screening by automatically identifying 

relevant features from molecular data. Tools such as DeepVS 

and PTPD utilize CNNs for screening compounds against 

specific targets and designing peptide-based molecules, 

respectively 
[49-50]

. In ligand-based virtual screening (LBVS), 

AI methods have proven invaluable for classifying and 

predicting the bioactivity of compounds based on their 

physicochemical properties and structural similarities to 

known active ligands. As the chemical space and available 

data grow exponentially, deep learning approaches have 

become essential for efficiently managing large datasets 

while maintaining speed and accuracy 
[45]

.The incorporation 

of AI into virtual screening provides numerous benefits, such 

as improved hit rates over conventional screening 

approaches, the capacity to predict ADME/Tox properties 

and "drug-likeness" during screening, and the potential to 

investigate interactions between all known compounds and 

potential targets. However, it is crucial to emphasize that the 

results of virtual screening must be validated through 

appropriate laboratory experiments and clinical studies 
[51]

. 

AI-enhanced virtual screening has established itself as a vital 

tool in drug discovery, especially in the search for anticancer 

agents. Its ability to rapidly screen libraries of natural 

products—including alkaloids, coumarins, flavonoids, 

lignans, quinones, tannins, and terpenes—has significantly 

advanced the identification of promising anticancer lead 

compounds derived from natural sources 
[51-52]

. 

AI; Network and Tools 

Artificial intelligence (AI) encompasses multiple domains, 

including reasoning, knowledge representation, and problem-

solving, with machine learning (ML) being a key component. 

ML relies on algorithms that identify patterns within 

classified datasets. A specialized branch of ML is deep 

learning (DL), which utilizes artificial neural networks 

(ANNs). These networks consist of interconnected 

computational units called "perceptrons," which function 

similarly to biological neurons by transmitting signals, akin 

to electrical impulses in the human brain 
[53]

. ANNs are 

composed of nodes that process inputs and generate outputs, 

either individually or in complex structures, using algorithms 

to address various problems 
[54]

. Different types of ANNs 

include multilayer perceptron (MLP) networks, recurrent 

neural networks (RNNs), and convolutional neural networks 

(CNNs), which employ either supervised or unsupervised 

learning methods
[55,56]

. 

The Multilayer Perceptron (MLP) network is utilized in 

various applications such as pattern recognition, optimization 

assistance, process identification, and control systems. 

Typically trained through supervised learning methods that 

operate in a single direction, MLPs can function as universal 

pattern classifiers 
[57]

. Recurrent Neural Networks (RNNs), 

on the other hand, feature closed-loop structures that enable 

them to retain and store information, exemplified by models 

like Boltzmann machines and Hopfield networks 
[57-

58]
.Convolutional Neural Networks (CNNs) consist of 

dynamic systems with localized connections, defined by their 

topology, and are widely used in image and video processing, 

modelling biological systems, simulating complex brain 

functions, pattern recognition, and advanced signal 

processing. More advanced architectures include Kohonen 

networks, Radial Basis Function (RBF) networks, Learning 

Vector Quantization (LVQ) networks, counter-propagation 

networks, and ADALINE networks 
[59]

. Figure 1 provides a 

summary of the diverse method domains within AI.

 

 

 

Figure 5: Machine Learning Neural Networks 
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Numerous tools have been created based on the core 

architectures of AI networks. A notable example is the 

International Business Machine (IBM) Watson 

supercomputer (IBM, New York, USA), which was 

developed using AI technology. Watson is designed to 

analyze a patient's medical data and cross-reference it with an 

extensive database, enabling it to propose tailored treatment 

strategies for cancer 
[60-61]

. 

AI in Advancing Pharmaceutical Product Development: 

The development of a new drug molecule necessitates its 

integration into an appropriate dosage form with specific 

delivery properties. In this context, artificial intelligence (AI) 

can replace traditional trial-and-error methods [62]. 

Computational tools, supported by Quantitative Structure-

Property Relationship (QSPR) models, can address 

challenges in formulation design, such as stability, 

dissolution, porosity, and other issues 
[63]

. Decision-support 

systems employ rule-based approaches to determine the type, 

nature, and quantity of excipients based on the drug's 

physicochemical properties. These systems operate through 

feedback mechanisms to monitor and adjust the formulation 

process as needed 
[64]

. Guo et al. combined Expert Systems 

(ES) and Artificial Neural Networks (ANN) to develop a 

hybrid system for creating direct-filling hard gelatin capsules 

of piroxicam, tailored to meet specific dissolution profile 

requirements. The Model Expert System (MES) provides 

decisions and recommendations for formulation development 

based on input parameters, while ANN uses backpropagation 

learning to correlate formulation parameters with the desired 

outcomes. These components are managed by a control 

module to ensure smooth and efficient formulation 

development 
[62]

.Additionally, mathematical tools such as 

computational fluid dynamics (CFD), discrete element 

modeling (DEM), and the Finite Element Method have been 

employed to analyze how powder flow properties affect die-

filling and tablet compression processes 
[65-66]

. CFD can also 

be used to investigate how tablet geometry influences 

dissolution profiles 
[67]

. Integrating these mathematical 

models with AI has the potential to significantly accelerate 

the production of pharmaceutical products. 

AI in Pharmaceutical Manufacturing: 

As manufacturing processes become increasingly complex, 

coupled with growing demands for efficiency and superior 

product quality, modern manufacturing systems are 

increasingly focused on transferring human expertise to 

machines, thereby revolutionizing traditional practices 
[68]

. 

The integration of artificial intelligence (AI) into 

manufacturing holds significant promise for the 

pharmaceutical industry. Tools like computational fluid 

dynamics (CFD), which employ Reynolds-Averaged Navier-

Stokes solvers, analyze the effects of agitation and stress 

levels in equipment such as stirred tanks, enabling the 

automation of numerous pharmaceutical operations. 

Similarly, advanced techniques like direct numerical 

simulations and large eddy simulations address intricate flow 

challenges in manufacturing 
[65]

. The innovative Chemputer 

platform facilitates digital automation for the synthesis and 

production of molecules by utilizing chemical codes and 

operating through a scripting language called Chemical 

Assembly 
[66]

.  

This platform has been successfully used to synthesize 

compounds such as sildenafil, diphenhydramine 

hydrochloride, and rufinamide, achieving yields and purity 

levels comparable to those of manual synthesis 
[69]

. AI 

technologies also enable efficient estimation of granulation 

completion in granulators with capacities ranging from 25 to 

600 liters 
[70]

. By combining technology and neuro-fuzzy 

logic, critical variables are correlated with their responses, 

resulting in a polynomial equation that predicts the required 

granulation fluid proportion, impeller speed, and diameter for 

both geometrically similar and dissimilar granulators 
[71]

.Discrete element modeling (DEM) has been widely 

applied in the pharmaceutical industry, for instance, in 

studying powder segregation in binary mixtures, examining 

the effects of blade speed and shape variations, predicting 

tablet trajectories during coating processes, and analyzing the 

time tablets spend in the spray zone 
[65]

. Artificial neural 

networks (ANNs) and fuzzy models have been used to 

investigate the relationship between machine settings and 

tablet capping, aiming to minimize this issue during 

manufacturing 
[72]

.AI tools such as meta-classifiers and 

tablet-classifiers help maintain the quality standards of final 

products by identifying potential errors in tablet 

manufacturing 
[73]

. Additionally, a patented system has been 

developed to determine the optimal combination of drug and 

dosage regimen for individual patients. This system uses a 

processor to receive patient information and designs 

customized transdermal patches accordingly 
[74]

. 

AI in Quality Control and Quality Assurance: 

The production of the desired product from raw materials 

involves balancing several factors 
[73]

. Quality control tests 

and maintaining consistency between batches often require 

manual intervention, which may not always be the most 

efficient approach, highlighting the need for AI integration at 

this stage [65]. To address this, the FDA updated the Current 

Good Manufacturing Practices (cGMP) to include a ‘Quality 

by Design’ approach, aiming to better understand the critical 

operations and specific criteria that affect the final quality of 

pharmaceutical products 
[75]

. Gams et al. combined human 

efforts with AI by analyzing initial production batch data and 

creating decision trees. These trees were then converted into 

rules, which operators used to guide future production cycles 
[73]

. In another study, Goh et al. utilized an Artificial Neural 

Network (ANN) to analyze the dissolution profile, a key 

indicator of batch consistency for theophylline pellets. The 

ANN accurately predicted the dissolution behaviour of the 

formulation with less than 8% error 
[76]

. AI can also be 

applied to regulate in-line manufacturing processes to ensure 

the product meets the desired standards 
[75]

. For instance, 

ANN-based monitoring of the freeze-drying process, which 

uses self-adaptive evolution combined with local search and 

backpropagation algorithms, helps predict temperature and 

cake thickness at future time points (t + Δt) under specific 

operating conditions, ensuring product quality 
[77]

. 

Additionally, automated data entry platforms like Electronic 

Lab Notebooks, along with advanced intelligent techniques, 

can ensure product quality assurance 
[78]

. Data mining and 

knowledge discovery methods within the Total Quality 

Management expert system are also valuable tools for 

making complex decisions and developing new technologies 

for intelligent quality control 
[79]

. 
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AI in Clinical Trial Design: 

Clinical trials aim to determine the safety and effectiveness of 

a drug for a specific disease in humans, typically spanning 6–

7 years and requiring significant financial investment. 

However, only 10% of drug candidates that enter these trials 

receive approval, resulting in substantial industry losses 
[80]

. 

These failures often stem from improper patient selection, 

inadequate technical resources, and poor infrastructure. 

Leveraging the vast amounts of digital medical data, AI can 

help mitigate these issues 
[81]

. 

Patient enrollment accounts for about one-third of the clinical 

trial process, and selecting the right participants is crucial, as 

poor recruitment contributes to nearly 86% of trial failures 
[82]

. AI can enhance patient selection in Phase II and III trials 

by analyzing genome-exposome profiles to predict suitable 

drug targets early on. Additionally, AI-driven approaches, 

including predictive machine learning and reasoning 

techniques, can assist in identifying promising drug 

candidates before trials begin, improving the likelihood of 

success 
[81

]. 

  

 

Figure 6: Artificial Intelligence in Clinical Trial Designing. 

Patient dropout rates contribute to 30% of clinical trial 

failures, necessitating further recruitment efforts and leading 

to increased time and costs. This issue can be addressed 

through continuous patient monitoring and adherence support 
[82]

. For instance, AiCure developed mobile application that 

tracked medication intake in schizophrenia patients during a 

Phase II trial, improving adherence by 25% and facilitating 

trial completion 

 AI in Pharmaceutical Product Management: 

AI for product market placement: 

Market positioning involves creating a product identity that 

attracts consumers, making it a key part of business strategies 

to establish a unique brand 
[83-84]

. This method was used in 

marketing Viagra, where it was promoted not only for 

treating erectile dysfunction but also for improving overall 

quality of life 
[85]

.With advancements in technology and e-

commerce, companies can now more easily gain brand 

recognition in the public domain. Search engines are used as 

a key platform to enhance online visibility and product 

positioning, as highlighted by the Internet Advertising 

Bureau. Businesses aim to rank higher than competitors, 

ensuring quick recognition of their brand 
[86]

. Additionally, 

techniques like statistical analysis and particle swarm 

optimization algorithms (introduced by Eberhart and 

Kennedy in 1995), combined with neural networks, provide 

insights into markets and help determine marketing strategies 

based on accurate consumer demand predictions 
[87]

. 

AI in predicting and analysing market trends: 

A company's success depends on its continuous growth and 

development. Despite having ample funds, pharmaceutical 

companies are seeing reduced R&D output due to their 

failure to adopt new marketing technologies 
[88]

. The "Fourth 

Industrial Revolution" has brought advances in digital 

technologies, supporting innovative digital marketing through 

a multicriteria decision-making approach. This method 

gathers and analyses data, using AI-based models to explore 

new marketing strategies 
[89]

.AI also helps in understanding 

customer needs and market demands, guiding decision-

making with prediction tools. It can forecast sales and 

analyse the market. AI-driven software engages consumers 

and informs doctors through ads that link directly to product 

sites 
[90]

. It also uses natural language processing to analyse 

keywords and predict purchase probabilities 
[91-92]

. Many B2B 

companies offer self-service technologies for browsing health 

products, placing orders, and tracking shipments. 

Pharmaceutical companies are also launching apps like 1mg, 

Medline, Netmeds, and Ask Apollo to meet patient needs 
[89]

. 

Market prediction is crucial for pharmaceutical distributors, 

who use AI tools like "Business Intelligent Smart Sales 

Prediction Analysis" to forecast sales and manage stock, 

preventing overstocking or shortages 
[93]

. 

AI in optimizing product prizing: 

The final price of a pharmaceutical product is determined 

based on market analysis and the costs incurred during its 

development. The key idea behind using AI to set this price is 

its ability to replicate human expert judgment in evaluating 

the factors influencing product pricing after manufacturing 
[94]

. These factors include research and development costs, 

regulatory price controls in the relevant country, the length of 

the exclusivity period, the market share of the new drug 

before patent expiration, the price of reference products, and 

price-fixing policies, all of which influence the cost of 

branded and generic drugs 
[95]

. 
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Figure 7: AI in product price optimization. 

In machine learning (ML), software analyses large datasets 

that include product development expenses, market demand, 

inventory costs, manufacturing costs, and competitor prices, 

then develops algorithms to predict the product's price. AI 

platforms like In Competitor, launched by Intelligence Node 

in 2012, provide a comprehensive retail competitive 

intelligence service that analyses competitor pricing data, 

helping brands and retailers monitor the competition. 

Similarly, platforms like Wise Athena and Navetti Price Point 

assist users in determining optimal product pricing, 

suggesting that pharmaceutical companies can adopt these 

tools to support product costing [96].  

Applications of AI in Drug Discovery & Development: 

AI in Nanomedicine: 

Nanomedicine leverages nanotechnology and pharmaceutical 

science to diagnose, treat, and monitor complex diseases such 

as HIV, cancer, malaria, asthma, and inflammatory 

conditions. In recent years, nanoparticle-based drug delivery 

systems have gained significant attention in therapeutics and 

diagnostics due to their ability to enhance treatment efficacy 

and precision [97]. The integration of artificial intelligence 

(AI) with nanotechnology holds immense potential to address 

challenges in formulation development, offering innovative 

solutions to improve drug delivery and therapeutic 

outcomes[98]. 

Nanorobots in Drug Delivery: 

Nano robots are composed of integrated circuits, sensors, 

power supplies, and secure data storage systems, all managed 

through advanced computational technologies like artificial 

intelligence (AI) 
[99-100]

. These nanorobots are programmed to 

perform critical functions such as collision avoidance, target 

identification, detection and attachment, and eventual 

excretion from the body. Recent advancements in nano- and 

microrobotics have enabled these devices to navigate to 

specific target sites based on physiological conditions, such 

as pH levels, thereby enhancing treatment efficacy while 

minimizing systemic side effects 
[100]

. The development of 

implantable nanorobots for controlled drug and gene delivery 

requires careful consideration of parameters like dose 

adjustment, sustained release, and controlled release 

mechanisms. AI tools, including neural networks (NNs), 

fuzzy logic, and integrators, play a crucial role in automating 

these processes 
[101]

. Additionally, microchip implants are 

utilized for programmed drug release and to track the location 

of the implant within the body, further enhancing precision 

and control in therapeutic applications. 

AI in Combinational Drug Delivery: 

Numerous drug combinations have been approved and 

commercialized for treating complex diseases like 

tuberculosis (TB) and cancer, as they can produce synergistic 

effects that accelerate recovery 
[102-103]

. However, identifying 

the most effective and precise drug combinations involves 

high-throughput screening of a vast number of candidates, 

making the process highly labor-intensive. For instance, 

cancer therapy often requires a combination of six or seven 

drugs. Advanced computational tools, such as artificial neural 

networks (ANNs), logistic regression, and network-based 

modeling, can streamline the screening of drug combinations 

and optimize dosing regimens 
[102-104]

.  For example, Rashid 

et al. developed a quadratic phenotype optimization platform 

to identify optimal combination therapies for bortezomib-

resistant multiple myeloma. This platform evaluated a library 

of 114 FDA-approved drugs and identified decitabine (Dec) 

and mitomycin C (MitoC) as the most effective two-drug 

combination. Additionally, the combination of Dec, MitoC, 

and mechlorethamine was found to be the superior three-drug 

therapy 
[103]

. Such approaches demonstrate the potential of 

computational models in enhancing precision medicine for 

complex diseases.
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Figure 8: Applications of AI in Drug Development. 

AI for Personalized Drug Dosing: 

Historically, clinical practice has followed a "one-size-fits-

all" approach to therapy. However, drugs can metabolize 

differently in different patients, meaning a treatment effective 

for one group may be less effective or cause adverse 

reactions in another. These variations are largely due to 

differences in individuals' genetic profiles. As a result, a 

more forward-thinking approach has emerged: personalized 

treatment, also known as precision medicine. This strategy 

tailors therapies and dosages to an individual's genetic 

makeup, aiming to optimize treatment outcomes while 

reducing side effects. Treatments are customized for 

individuals or groups with similar genetic characteristics. 

Artificial intelligence (AI) has played a pivotal role in 

advancing the development of personalized medicine 
[105]

. 

 AI In Drug Toxicity Prediction: 

Artificial intelligence (AI) has become a crucial tool in 

enhancing drug toxicity prediction, significantly improving 

the ability to identify potential adverse effects of new drug 

candidates. Through rigorous training and validation, AI 

models effectively outline toxicity profiles, particularly 

focusing on potential harm to specific organs or biological 

pathways. This ability allows for the prioritization of 

compounds with fewer adverse effects, thereby refining the 

selection of safer drug candidate
[106-107]

. Furthermore, the use 

of AI for toxicity prediction has introduced efficiencies in 

evaluating off-target toxicity, genotoxicity, organ toxicity, 

cytotoxicity, and mitochondrial toxicity. By utilizing 

extensive datasets, including gene expression and cell 

imaging data, AI models can predict in vivo toxicity effects 

with high precision. Quantitative Structure-Activity 

Relationship (QSAR) models, which use ensemble 

techniques like Random Forests (RF) and Support Vector 

Machines (SVMs), have demonstrated remarkable accuracy 

and robustness in toxicity prediction, outperforming 

traditional methods 
[108-110]

. 

 

 

Figure 9: AI in Drug toxicity prediction. 
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Challenges in Adopting AI: ways to overcome 

Despite the immense potential of AI to revolutionize drug 

discovery, several significant challenges must be overcome to 

fully realize its capabilities. A major obstacle is ensuring data 

quality and accessibility. AI models rely heavily on data, and 

their performance depends on the volume and diversity of the 

datasets they are trained on. However, obtaining high-quality 

biological data is often challenging due to privacy regulations 

and the fragmented distribution of data across various 

institutions. Moreover, generating the required data can be 

costly and time-intensive, particularly for smaller research 

teams. As a result, fostering collaboration and establishing 

data-sharing initiatives are critical to providing access to 

comprehensive and diverse datasets, which are essential for 

advancing AI-driven drug discovery 
[111-112]

.Data bias and 

limited generalizability present significant challenges in AI-

driven drug discovery. When trained on biased datasets, AI 

models can produce unreliable predictions. Such biases might 

stem from underrepresentation of specific populations in 

clinical trials, regional variations in data collection, or 

inconsistencies in healthcare record-keeping practices. 

Furthermore, overfitting—where a model performs well on 

training data but poorly on unseen data—can lead to the 

selection of ineffective drug candidates or false positives. 

Addressing these challenges is crucial to enhance the 

reliability and widespread applicability of AI in drug 

development 
[113-114]

.Over time, certain tasks in drug 

development, manufacturing, supply chains, clinical trials, 

and sales will become automated. However, these 

applications fall under the umbrella of 'narrow AI,' which 

requires extensive training on large datasets and is designed 

for specific tasks. As a result, human involvement remains 

essential for the effective implementation, development, and 

management of AI systems. Concerns about job losses may 

be overstated, as AI is primarily replacing repetitive tasks, 

allowing humans to focus on more complex problem-solving, 

creativity, and strategic insights. 

Pharmaceutical companies must gain a clear understanding of 

AI technology's potential in addressing challenges post-

implementation, as well as define realistic and achievable 

objectives. To fully harness the capabilities of AI platforms, 

it is crucial to develop a team of skilled data scientists and 

software engineers who possess strong expertise in AI 

technology. Additionally, these professionals must have a 

deep understanding of the company's business targets and 

R&D goals to ensure the technology is effectively aligned 

with organizational priorities. 

CONCLUSION: 

The integration of Artificial Intelligence (AI) into drug 

discovery and development has become a pivotal milestone 

in the pharmaceutical industry, significantly enhancing the 

quality and effectiveness of therapeutic solutions. AI has not 

only accelerated the drug discovery process but also created 

new opportunities for drug repurposing, target identification, 

and predicting novel therapeutic applications. Its crucial role 

in repurposing has redefined traditional approaches to drug 

discovery, establishing AI as an essential tool for innovative 

treatment development. The use of AI in virtual screening 

and drug design highlights its ability to optimize drug 

development strategies. By harnessing AI's computational 

power, researchers can accurately identify and classify target 

cells, facilitating precise evaluation of potential drug 

candidates. This efficiency also extends to areas such as 

polypharmacology, chemical synthesis, and drug 

repurposing, underscoring AI's transformative impact on 

advancing global healthcare outcomes. 
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