Current Trends and Recent Development of Transdermal Drug Delivery System TDDS


  • Devbrat Soni Student, B. Pharm, Seiko College of Pharmacy, Lucknow [U.P].
  • Kartikay Prakash Research Scholar, M. Pharm, Aryakul College of Pharmacy and Research, Lucknow [U.P].
  • Kashif Shakeel Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].
  • Priyanka Kesharawani Associate Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].



Transdermal Drug delivery system, Novel Drug Delivery system, Nanocarriers, PE,Epidermis, Skin, Drug Permeation etc.​


The basic goal of TDDS is to administer medications at a predefined pace into systemic circulation through the skin with little inter- and intrapatient variance. TDDS come in a variety of forms, including reservoir and matrix systems, single-layer drugs in adhesive, and multi-layer drugs in adhesive. With more than 35 items already authorised for sale in the US and around 16 active components authorised for use as TDDSs internationally, the market value of TDDS products is growing quickly. Due to its low likelihood of patient rejection, simplicity of administration, and patients' convenience and perseverance, a transdermal drug delivery system [TDDS] is a desirable substitute for traditional needle injections. However, transdermal administration is complicated and constrained by the physicochemical characteristics of the skin. The many types of TDDS approaches that are now accessible are covered in this study, along with their individual benefits and drawbacks, characterization techniques, and potential. A transdermal patch is an tenacious medical patch that's applied to the skin to administer a particular quantum of drug via the skin and into the bloodstream, constantly accelerating the mending of a damaged body part. Transdermal medicine administration is a fairly new technology that has the implicit to reduce the need for needles when furnishing a wide range of specifics, but the cost is an essential element to take into account.




Download data is not yet available.

Author Biographies

Devbrat Soni, Student, B. Pharm, Seiko College of Pharmacy, Lucknow [U.P].

Student, B. Pharm, Seiko College of Pharmacy, Lucknow [U.P].

Kartikay Prakash, Research Scholar, M. Pharm, Aryakul College of Pharmacy and Research, Lucknow [U.P].

Research Scholar, M. Pharm, Aryakul College of Pharmacy and Research, Lucknow [U.P].

Kashif Shakeel, Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].

Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].

Priyanka Kesharawani, Associate Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].

Associate Professor, Aryakul College of Pharmacy and Research, Lucknow [U.P].


1. Prausnitz MR, Langer R. “Transdermal Drug Delivery.” Nature Biotechnology, 2008; 26(11]: 1261-1268.
2. Patel DM, Kavitha K. Formulation and evaluation aspects of transdermal drug deliverysystem.International Journal of Pharmaceutical Sciences Review and Research. 2011; 6 [2]:83-90.
3. Saroha K, Yadav B and Sharma B. Transdermal patch: A discrete dosage form. InternationalJournal of Current Pharmaceutical Research, 2011; 3(3]: 98-108.
4. Roohnikan M, Laszlo E, Babity S, Brambilla DA. Snapshot of transdermal andtropical drug delivery research in Canada. Pharmaceutics. 2019;11(6]:256.
5. Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermaldelivery Systems for Biomolecules. J Pharm Innov. 2021;6:1–14.
6. Ali H. Transdermal drug delivery system & patient compliance. MOJBioequivAvailab. 2017;3(2]:47–8.
7. Leppert W, Malec–Milewska M, Zajaczkowska R, Wordliczek J. Transdermaland Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23(3]:681.
8. Akhter N, Singh V, Yusuf M, Khan RA. Non-invasive drug deliverytechnology: development and current status of transdermal drug deliverydevices, techniques and biomedical applications. Biomed Tech. 2020;65(3]:243–72.
9. Pires LR, Vinayakumar KB, Turos M, Miguel V, Gaspar J. A perspective on microneedle-based drug delivery and diagnostics in Paediatrics. J Pers Med. 2019;9(4]:49.
10. Ruby PK, Pathak SM, Aggarwal D. Critical attributes of transdermal drugdelivery system [TDDS] – a generic product development review. DrugDev Ind Pharm. 2014;40(11]:1421–8.
11. Ali S, Shabbir M, Shahid N. The structure of skin and transdermal drugdelivery system - a review. Res J Pharm Tech. 2015;8(2]:103–9.
12. Wang M, Luo Y, Wang T, Wan C, Pan L, Pan S, et al. Artificial skin perception.Adv Mater. 2020;33:e2003014.
13. Hutton AR, McCrudden MT, Larrañeta E, Donnelly RF. Influence of molecularweight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel lowmolecular weight biotherapeutics. J Mater Chem B. 2020;8(19]:4202–9.
14. Andrews SM, Jeong EH, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, Not Just Stratum Corneum. Pharm Res. 2013;30(4]:1099–109.
15. Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. Artif Cells NanomedBiotechnol. 2018; 46(1]:472–87.
16. Schuetz, Y.B.; Naik, A.; Guy, R.H.; Kalia, Y.N. Emerging Strategies for the Transdermal Delivery of Peptide and Protein Drugs. Expert Opin. Drug Deliv. 2005, 2, 533–548.
17. Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin Permeabilization for Transdermal Drug Delivery: Recent Advances and Future Prospects. Expert Opin. Drug Deliv. 2014, 11, 393–407.
18. Shahzad, Y.; Louw, R.; Gerber, M.; du Plessis, J. Breaching the Skin Barrier through Temperature Modulations. J. Control. Release 2015, 202, 1–13.
20. Hopp SM. Developing Custom Adhesive Systems forTransdermal Drug Delivery Products. PharmaceuticalTechnology 2002, 30-36.
21. Misra AN. Transdermal Drug Delivery. In Jain NK, Editor. Controlled and Novel Drug Delivery. New Delhi: CBS Publishers and Distributors, 2002; 101-107.
22. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotech-nol. 2008;26(11]:1261–8.
23. Kalia YN, Merino V, Guy RH. Transdermal drug delivery: clinical aspects. Dermatol Clin. 1998;16(2]:289–99.
24. Kornick CA, Santiago-Palma J, Moryl N, Payne R, Obbens EA. Beneft-risk assessment of transdermal fentanyl for the treatment of chronic pain. Drug Saf. 2003;26(13]:951–73.
25. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7(3]:90–105.
26. Varvel J, Shafer S, Hwang S, Coen P, Stanski D. Absorption characteristics of transdermally administered fentanyl. The Journal of the American Society of Anesthesiologists. 1989;70(6]:928–34.
27. Rouphael NG, Paine M, Mosley R, Henry S, McAllister DV, Kalluri H, et al. The safety, immunogenicity, and acceptability of inactivated infuenza vaccine delivered by microneedle
28. patch [TIV-MNP 2015]: a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095]:649–58.]30575-5.
29. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743.
30. Liu GS, Kong Y, Wang Y, Luo Y, Fan X, Xie X, et al. Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials. 2020;232:119740.
31. Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019;45(2]:188–201.
32. Ale IS, Maibach HA. Diagnostic approach in allergic and irritant contact dermatitis. ExpertRev Clin Immunol. 2010;6(2]:291–310.
33. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14]:1547–68.
34. Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Delivery Rev. 2012, 64, 128–137. [CrossRef]
35. Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skininteractions and medical applications. Int. J. Pharm. 2018, 535, 1–17. [CrossRef]
36. Khan, D.; Qindeel, M.; Ahmed, N.; Khan, A.U.; Khan, S.; Rehman, A.U. Development of novel pH-sensitive nanoparticle-basedtransdermal patch for management of rheumatoid arthritis. Nanomedicine 2020, 15, 603–624. [CrossRef] [PubMed]
37. Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery:Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [CrossRef]
38. Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 2016, 240,77–92. [CrossRef]
39. Shin, S.C.; Kim, H.J.; Oh, I.J.; Cho, C.W.; Yang, K.H. Development of tretinoin gels for enhanced transdermal delivery. Eur. J.Pharm. Biopharm. 2005, 60, 67–71. [CrossRef]
40. Garg, T.; Singh, S.; Goyal, A.K. Stimuli-Sensitive Hydrogels: An excellent carrier for drug and cell delivery. Drug Carrier Syst.2013, 30, 369–409. [CrossRef] [PubMed]
41. Notman, R.; Anwar, J. Breaching the skin barrier—Insights from molecular simulation of model membranes. Drug Deliv. Rev.2013, 65, 237–250. [CrossRef] [PubMed]
42. Novotny, J.; Kovarikova, P.; Novotny, M.; Janusova, B. Dimethylamino acid esters as biodegradable and reversible transdermalpermeation enhancers: Effects of linking chain length, chirality and poly-fluorination. Pharm. Res. 2009, 26, 811–821. [CrossRef]
43. Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu,X.; et al. A7RC peptide modified paclitaxelliposomes dually target breast cancer. Biomater. Sci. 2015, 3, 1545–1554. [CrossRef] [PubMed]
44. Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review ofcurrent status and future prospects. Nano Today 2014, 9, 223–243. [CrossRef]
45. Elsayed, M.M.A.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid vesicles for skin delivery of drugs: Reviewing threedecades of research. Int. J. Pharm. 2007, 332, 1–16. [CrossRef]
46. Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 2015, 6, 219–223. [CrossRef]
47. Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M. Ethosomes as nanocarriers for the development of skindelivery formulations. Pharm. Res. 2021, 38, 947–970. [CrossRef] [PubMed]
48. Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of theart. Nano Rev. Exp. 2017, 8, 1325708. [CrossRef] [PubMed]
49. Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation yechnique for transdermaldrug delivery. Pharmaceutics 2020, 12, 855. [CrossRef] [PubMed]
50. Ghanbarzadeh, S.; Khorrami, A.; Arami, S. Nonionic surfactant-based vesicular system for transdermal drug delivery. Drug Deliv.2015, 22, 1071–1077. [CrossRef]
51. Singh, D.; Pradhan, M.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. CellsNanomed. Biotechnol. 2015, 43, 282–290. [CrossRef] [PubMed]
52. Han, T.; Das, D.B. Potential of Combined Ultrasound and Microneedles for Enhanced Transdermal Drug Permeation: A Review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328.
53. Mitragotri, S. Devices for Overcoming Biological Barriers: The use of physical forces to disrupt the barriers. Adv. Drug Deliv. Rev. 2013, 65, 100–103.
54. Lee, J.W.; Gadiraju, P.; Park, J.; Allen, M.G.; Prausnitz, M.R. Microsecond Thermal Ablation of Skin for Transdermal Drug Delivery. J. Control. Release 2011, 154, 58–68.
55. Azagury, A.; Khoury, L.; Enden, G.; Kost, J. Ultrasound Mediated Transdermal Drug Delivery.Adv. Drug Deliv. Rev. 2014, 72, 127–143.
56. Zhang, D.; Rielly, C.D.; Das, D.B. Microneedle-Assisted Microparticle Delivery by Gene Guns: Experiments and Modeling on the Effects of Particle Characteristics. Drug Deliv. 2014, 22, 1–16.
57. Arora, A.; Prausnitz, M.R.; Mitragotri, S. Micro-Scale Devices for Transdermal Drug Delivery. Int. J. Pharm. 2008, 364, 227–236.
58. Murthy, S.N.; Sammeta, S.M.; Bowers, C. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies andpatch design. J. Control. Release 2010, 148, 197–203. [CrossRef]
59. Alexander, A.; Dwivedi, S.; Ajazuddin; Giri, T. K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drugpermeation through transdermal drug delivery. J. Control. Release 2012, 164, 26–40. [CrossRef] [PubMed]
60. Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin Permeabilization for Transdermal Drug Delivery: Recent Advances and Future Prospects. Expert Opin. Drug Deliv. 2014, 11, 393–407.
61. Gratieri, T.; Alberti, I.; Lapteva, M.; Kalia, Y.N. Next Generation Intra-and Transdermal
62. Therapeutic Systems: Using Non-and Minimally-Invasive Technologies to Increase DrugDelivery into and Across the Skin. Eur. J. Pharm. Sci. 2013, 50, 609–622.
63. Lakshmanan, S.; Gupta, G.K.; Avci, P.; Chandran, R.; Sadasivam, M.; Jorge, A.E.S.; Hamblin, M.R. Physical Energy for Drug Delivery; Poration, Concentration and Activation. Adv. Drug Deliv. Rev. 2014, 71, 98–114.
64. Badkar, A.V.; Banga, A.K. Electrically Enhanced Transdermal Delivery of a Macromolecule. J. Pharm. Pharmacol. 2002, 54, 907–912.
65. Kotzki, S.; Roustit, M.; Arnaud, C.; Godin-Ribuot, D.; Cracowski, J. Effect of Continuous Vs Pulsed Iontophoresis of Treprostinil on Skin Blood Flow. Eur. J. Pharm. Sci. 2015, 72, 21–26.
66. Gratieri, T.; Kalia, Y.N. Mathematical Models to Describe Iontophoretic Transport in Vitro and in Vivo and the Effect of Current Application on the Skin Barrier. Adv. Drug Deliv. Rev. 2013, 65, 315–329.
67. Toyoda, M.; Hama, S.; Ikeda, Y.; Nagasaki, Y.; Kogure, K. Anti-Cancer Vaccination by Transdermal Delivery of Antigen Peptide-Loaded Nanogels via Iontophoresis. Int. J. Pharm. 2015,483, 110–114.
68. Krueger, E.; Claudino Junior, J.L.; Scheeren, E.M.; Neves, E.B.; Mulinari, E.; Nohama, P. Iontophoresis: Principles and Applications. FisioterapiaMovimento 2014, 27, 469–481.
69. Kalia, Y.; Naik, A.; Garrison, J.; Guy, R.; Naik, A.; Garrison, J.; Guy, R. Iontophoretic Drug Delivery. Adv. Drug Deliv. Rev. 2004, 56, 619–658.
70. Yarmush, M.L.; Golberg, A.; Sersa, G.; Kotnik, T.; Miklavcic, D. Electroporation-based technologies for medicine: Principles,applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [CrossRef] [PubMed]
71. Eriksson, F.; Totterman, T.; Maltais, A.-K.; Pisa, P.; Yachnin, J. DNA vaccine coding for the rhesus prostate specific antigendelivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013, 31, 3843–3848. [CrossRef]
72. Thomson, K.R.; Cheung, W.; Ellis, S.J.; Federman, D.; Kavnoudias, H.; Loader-Oliver, D.; Roberts, S.; Evans, P.; Ball, C.; Haydon, A.Investigation of the Safety of Irreversible Electroporation in Humans. J. Vasc. Interv. Radiol. 2011, 22, 611–621. [CrossRef]
73. Sammeta, S.M.; Vaka, S.R.K.; Murthy, S.N. Transcutaneous electroporation mediated delivery of doxepin-HPCD complex: Asustained release approach for treatment of postherpetic neuralgia. J. Control. Release 2010, 142, 361–367. [CrossRef] [PubMed]
74. Singer, A.J.; Homan, C.S.; Church, A.L.; McClain, S.A. Low‐frequency Sonophoresis: Pathologic and Thermal Effects in Dogs. Acad. Emerg. Med. 1998, 5, 35–40.
75. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach andincreasing potential for transdermal drug delivery system. Biomed. Pharmacotherapy 2019, 109, 1249–1258. [CrossRef] [PubMed]
76. Ita, K. Transdermal Delivery of Drugs with Microneedles-Potential and Challenges. Pharmaceutics 2015, 7, 90–105. [CrossRef][PubMed]
77. Whitley RJ, Roizman B. Herpes simplex virus infections. Thelancet. 2001;357(9267]:1513–8.
78. Saxena A, Tewari G, Saraf SA. Formulation and evaluation ofmucoadhesive buccal patch of acyclovir utilizing inclusion phenomenon. Braz J Pharm Sci. 2011;47(4]:887–97.
79. Shojaei AH, Zhuo S, Li X. Transbuccal delivery of acyclovir [II]:feasibility, system design, and in vitro permeation studies. J Pharm Sci. 1998;1(2]:66–73.
80. Rossi S, Sandri G, Ferrari F, Bonferoni MC, Caramella C. Buccaldelivery of acyclovir from flms based on chitosan and polyacrylic acid. Pharm Dev Technol. 2003;8(2]:199–208.
81. Kim AM, Gwak HS, Chun IK. Formulation and evaluation of moisture-activated acyclovir patches. J Pharm Investig.2006;36(6]:393–9.
82. Pamornpathomkul B, Ngawhirunpat T, Tekko IA, Vora L,McCarthy HO, Donnelly RF. Dissolving polymeric microneedlearrays for enhanced site-specifc acyclovir delivery. Eur J Pharm Sci. 2018;121:200–9.
83. Arvin AM. Varicella-zoster virus. Clin Microbiol Rev.1996;9(3]:361–81.
84. Cha HR, Shim DH, Lee J. A microneedle vaccination with glycoprotein E of Varicella Zoster virus elicits antibody production and polyfuctional T cells in mice. Am Assoc Immnol. 2020.
85. Lin PL, Fan SZ, Huang CH, Huang HH, Tsai MC, Lin CJ, et al.Analgesic efect of lidocaine patch 5% in the treatment of acuteherpes zoster: a double-blind and vehicle-controlled study. RegAnesth Pain Med. 2008;33(4]:320–5.
86. Bart BJ, Biglow J, Vance JC, Neveaux JL. Salicylic acid in karaya gum patch as a treatment for verruca vulgaris. J Am Acad Dermatol. 1989;20(1]:74–6.
87. Konicke K, Olasz E. Successful treatment of recalcitrant plantar warts with bleomycin and microneedling. Dermatol Surg.2016;42(8]:1007–8.
88. Ghonemy S, Ibrahim Ali M, Ebrahim HM. The efficacy ofmicroneedling alone vs its combination with 5-fuorouracil solution vs 5-fuorouracil intralesional injection in the treatment of plantar warts. Dermatol Ther. 2020;33(6]:e14179.
89. Ryu HR, Jeong HR, Seon-Woo HS, Kim JS, Lee SK, Kim HJ, et al. Efcacy of a bleomycin microneedle patch for the treatment of warts. Drug Deliv Transl Res. 2018;8(1]:273–80.
90. Kines RC, Zarnitsyn V, Johnson TR, Pang YYS, Corbett KS, Nicewonger JD etal. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PloS One. 2015;10(3]:e0120797.
91. Su CP, Tsou TP, Chen CH, Lin TY, Chang SC, Group IC et al.Seasonal infuenza prevention and control in Taiwan—strategies revisited. J Formos Med Assoc. 2019;118(3]:657–63.
92. Zhu Q, Zarnitsyn VG, Ye L, Wen Z, Gao Y, Pan L, etal. Immunization by vaccine-coated microneedle arrays protectsagainst lethal infuenza virus challenge. Proc Natl Acad Sci. 2009;106(19]:7968–73.
93. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated infuenzavirus to improve vaccine stability and immunogenicity. J Control Release. 2010;142(2]:187–95.
94. Quan FS, Kim YC, Yoo DG, Compans RW, Prausnitz MR, Kang SM. Stabilization of infuenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS ONE. 2009;4(9]:e7152.
95. Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Jacob J, Prausnitz MR, Compans RW, et al. Serological memory and longterm protection to novel H1N1 infuenza virus after skin vaccination. J Infect Dis. 2011;204(4]:582–91.
96. Quan FS, Kim YC, Vunnava A, Yoo DG, Song JM, Prausnitz MR,et al. Intradermal vaccination with infuenza virus-like particlesby using microneedles induces protection superior to that with intramuscular immunization. J Virol. 2010;84(15]:7760–9.
97. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation of microneedles coated with infuenza virus-like particle vaccine. AAPS PharmSciTech. 2010;11(3]:1193–201.
98. Weldon WC, Martin MP, Zarnitsyn V, Wang B, Koutsonanos D,Skountzou I, et al. Microneedle vaccination with stabilized recombinant infuenza virus hemagglutinin induces improved protectiveimmunity. Clin Vaccine Immunol. 2011;18(4]:647–54.
99. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells–dendritic cells of the epidermis. APMIS. 2003;111(7–8]:725–40
100. Li B, Wang J, Yang SY, Zhou C, Wu MX. Sample-free quantification of blood biomarkers via laser-treated skin. Biomaterials.2015;59:30–8.
101. Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, PrausnitzMR. Improved infuenza vaccination in the skin using vaccine coated microneedles. Vaccine. 2009;27(49]:6932–8.
102. Perry RT, Halsey NA. The clinical signifcance of measles: a review. J Infect Dis. 2004;189(Supplement_1]:S4-S16.
103. Grifn DE. Measles vaccine. Viral Immunol. 2018;31(2]:86–95.
104. Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM.Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int J Epidemiol. 2009;38(1]:192–205.
105. Edens C, Collins ML, Ayers J, Rota PA, Prausnitz MR. Measles vaccination using a microneedle patch. Vaccine. 2013;31(34]:3403–9.
106. Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. Amicroneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37]:4712–8.
107. Joyce JC, Carroll TD, Collins ML, Chen MH, Fritts L, Dutra JCet al. A microneedle patch for measles and rubella vaccination isimmunogenic and protective in infant rhesus macaques. J Infect Dis. 2018;218(1]:124–32.
108. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China The lancet. 2020;395(10223]:497–506.
109. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5]:269–70.
110. Chen W, Cai B, Geng Z, Chen F, Wang Z, Wang L, et al. Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter. 2020;3(5]:1589–600.
111. Hauser, R. A. [2011]. Future treatments for Parkinson’s disease: Surfing the PD pipeline.International Journal of Neuroscience, 121, 53–62.



How to Cite

Soni, D., Prakash, K., Shakeel, K., & Kesharawani, P. (2023). Current Trends and Recent Development of Transdermal Drug Delivery System TDDS. Asian Journal of Pharmaceutical Research and Development, 11(3), 181–189.