Soluble Epoxide Hydrolase

Authors

  • Pooja M. Sontakke Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).
  • Suraj G. Malpani Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).
  • Pooja R. Tange Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).
  • MD Rayees Ahmad Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).
  • Vishweshwar M. Dharashive Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

DOI:

https://doi.org/10.22270/ajprd.v12i2.1369

Abstract

Epoxyeicosatrienoic acids (EETs) have numerous cardiovascular benefits, including vasodilation, anti-inflammatory actions, and anti-migratory effects on vascular smooth muscle cells. However, sEH, an enzyme that breaks down EETs into diols, limits these benefits. The development of sEH inhibitors (sEHIs), particularly those based on 1,3-disubstituted urea, has shown promise in enhancing the therapeutic properties of EETs. These inhibitors are antihypertensive and anti-inflammatory and can protect the heart, brain, and kidneys from damage. While there are still challenges to overcome, such as improving the drug-like properties of sEHIs and finding better ways to target specific tissues, the initiation of clinical trials for sEHIs highlights their potential as therapeutic agents.

 

Downloads

Download data is not yet available.

Author Biographies

Pooja M. Sontakke, Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Suraj G. Malpani, Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Pooja R. Tange, Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

MD Rayees Ahmad, Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Vishweshwar M. Dharashive, Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

Shivlingeshwar College of Pharmacy, Almala, Tq. Ausa Dist. Latur, Maharashtra (MH).

References

Fitzgerald, G. A. Coxibs and cardiovascular disease. N. Engl. J. Med. 351, 1709–1711 (2004).

Puri, A., McGoon, M. D. & Kushwaha, S. S. Pulmonary arterial hypertension: current therapeutic strategies. Nature Clin. Pract. Cardiovasc. Med. 4, 319–329 (2007).

Capdevila, J., Marnett, L. J., Chacos, N., Prough, R. A. & Estabrook, R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyeicosatetraenoic acids. Proc. Natl Acad. Sci. USA 79, 767–770 (1982).

Ishizuka, T. et al. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kB activation and the production of inflammatory cytokines in human endothelial cells. J. Pharmacol. Exp. Ther. 324, 103–110 (2008).

Sarkis, A., Lopez, B. & Roman, R. J. Role of 20-hydroxyeicosatetraenoic acid and Epoxyeicosatrienoic acids in hypertension. Curr. Opin. Nephrol. Hypertens. 13, 205–214 (2004).

Gross, G. J. et al. Effects of the selective EET antagonist, 14,15-EEZE, on cardio protection produced by exogenous or endogenous EETs in the canine heart. Am. J. Physiol. Heart Circ. Physiol. 294, H2838–H2844 (2008)

Imig, J. D. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am. J. Physiol. Renal Physiol. 289, F496–F503 (2005).

Spector, A. A., Fang, X., Snyder, G. D. & Weintraub, N. L. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog. Lipid Res. 43, 55–90 (2004).

Spector, A. A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 50, S52–S56 (2009).

Michaelis, U. R. & Fleming, I. From endotheliumderived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol. Ther. 111, 584–595 (2006).

Fleming, I. DiscrEET regulators of homeostasis: epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. Trends Pharmacol. Sci. 28, 448–452 (2007).

Fleming, I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat. 82, 60–67 (2007).

Gebremedhin, D. et al. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am. J. Physiol. 263, H519–H525 (1992).

Imig, J. D., Navar, L. G., Roman, R. J., Reddy, K. K. & Falck, J. R. Actions of epoxygenase metabolites on the preglomerular vasculature. J. Am. Soc. Nephrol. 7, 2364–2370 (1996).

Li, P. L., Zhang, D. X., Ge, Z. D. & Campbell, W. B. Role of ADP-ribose in 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 282, H1229–H1236 (2002).

Larsen, B. T. et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BKCa channels: implications for soluble epoxide hydrolase inhibition. Am. J. Physiol. Heart Circ. Physiol. 290, H491–H499 (2006).

Potente, M., Michaelis, U. R., Fisslthaler, B., Busse, R. & Fleming, I. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. J. Biol. Chem. 277, 15671–15676 (2002).

Sun, J. et al. Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90, 1020–1027 (2002).

Elmarakby, A. A. et al. Chemokine receptor 2b inhibition provides renal protection in angiotensin II-salt hypertension. Hypertension 50, 1069–1076 (2007).

Falck, J. R. et al. 11,12-epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-α-induced VCAM-1 expression. Bioorg Med. Chem. Lett. 13, 4011–4014 (2003).

Node, K. et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285, 1276–1279 (1999).

Yu, Z. et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 87, 992–998 (2000). This study provided the first experimental evidence that a sEHI can increase epoxide levels and lower blood pressure in an animal model of hypertension.

mig, J. D., Zhao, X., Capdevila, J. H., Morisseau, C. & Hammock, B. D. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39, 690–694 (2002).

Morisseau, C. & Hammock, B. D. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 45, 311–333 (2005).

Morisseau, C. et al. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc. Natl Acad. Sci. USA 96, 8849–8854 (1999). This is the original description of the development of urea compounds as sEHIs.

Seubert, J. M. et al. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ. Res. 99, 442–450 (2006).

This study used the combination of genetic and pharmacological manipulation of sEHIs and epoxides and showed cardiac-protective effects from ischaemic events.

Loch, D., Hoey, A., Morisseau, C., Hammock, B. O. & Brown, L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem. Biophys. 47, 87–98 (2007).

Luria, A. et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J. Biol. Chem. 282, 2891–2898 (2007).

Olearczyk, J. J. et al. Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats. Clin. Sci. (Lond.) 116, 61–70 (2009).

Xu, D. et al. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc. Natl Acad. Sci. USA 103, 18733–18738 (2006).

Zhang, W. et al. Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39, 2073–2078 (2008).

Schmelzer, K. R. et al. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl Acad. Sci. USA 102, 9772–9777 (2005).

Jiang, J. G. et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumours. Cancer Res. 65, 4707–4715 (2005).

Chen, C. et al. Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. J. Pharmacol. Exp. Ther. 329, 908–918 (2009).

Imig, J. D., Dimitropoulou, C., Reddy, D. S., White, R. E. & Falck, J. R. Afferent arteriolar dilation to 11,12-EET analogs involves PP2A activity and Ca2+-activated K+ channels. Microcirculation 15, 137–150 (2008).

Published

2024-04-15 — Updated on 2024-04-15

Versions

How to Cite

Sontakke, P. M., Malpani, S. G., Tange, P. R., Ahmad, M. R., & Dharashive, V. M. (2024). Soluble Epoxide Hydrolase. Asian Journal of Pharmaceutical Research and Development, 12(2), 87–95. https://doi.org/10.22270/ajprd.v12i2.1369