MAGNETIC AND pH SENSITIVE NANOPARTICLES FOR CANCER DRUG DELIVERY

Authors

  • Amol G Jadhao Master of Pharmacy in Pharmaceutics at Anuradha College of Pharmacy, Chikhli Dist-Buldana M.S. India
  • Akashy G Bhosale Master of Pharmacy in Quality assurance at Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India
  • G R Sitaphale Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India
  • Jeevan R Rajguru Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India
  • Sonali A Sonali Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India
  • S V S. V. Deshmane Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

DOI:

https://doi.org/10.22270/ajprd.v7i4.540

Keywords:

pH responsive polymers; nanomedicine; Mesoporous nanoparticles, tumor imaging; drug delivery

Abstract

Cancer remains a leading cause of death worldwide with more than 10 million new cases every year. Tumor-targeted nanomedicines have shown substantial improvements of the therapeutic index of anticancer agents, addressing the deficiencies of conventional chemotherapy, and have had a tremendous growth over past several decades. Due to the pathophysiological characteristics that almost all tumor tissues have lower pH in comparison to normal healthy tissues, among various tumor-targeted nanomaterials, pH-responsive polymeric materials have been one of the most prevalent approaches for cancer diagnosis and treatment. In this review, we summarized the types of pH-responsive polymers, describing their chemical structures and pH-response mechanisms; we illustrated the structure-property relationships of pH-responsive polymers and introduced the approaches to regulating their pH-responsive behaviors; we also highlighted the most representative applications of pH-responsive polymers in cancer imaging and therapy. Many strategies based on stimuli-responsive nanocarriers have been developed to control the drug release and avoid premature release. Here, we focus on the use of the subtle changes of pH between healthy and diseased areas along the body to trigger the release of the cargo. The application of nanotechnology to medicine constitutes a major field of research nowadays. In particular, the use of mesoporous silica and carbon nanoparticles has attracted the attention of numerous researchers due to their unique properties, especially when applied to cancer treatment.

 

Downloads

Download data is not yet available.

Author Biographies

Amol G Jadhao, Master of Pharmacy in Pharmaceutics at Anuradha College of Pharmacy, Chikhli Dist-Buldana M.S. India

Master of Pharmacy in Pharmaceutics at Anuradha College of Pharmacy, Chikhli Dist-Buldana M.S. India

Akashy G Bhosale, Master of Pharmacy in Quality assurance at Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Master of Pharmacy in Quality assurance at Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

G R Sitaphale, Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Jeevan R Rajguru, Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Sonali A Sonali, Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Department of Pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

S V S. V. Deshmane, Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

Department of pharmacognosy, Anuradha College of Pharmacy, Chikhli Dist- Buldana M.S. India

References

1. Nogueira E, Gomes AC, Preto A, Cavaco-Paulo, A.Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nano med. Nanotechnol. Biol. Med. 2015 ;(12)1113–1126
2. Brede C, Labhasetwar V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chronic Kidney Dis. 2013; (20):454–465.
3. Azarmi S Roa, WH Löbenberg, R Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 2008; (60)863–875.
4. Sun L, Zhang X, Wu Z, Zheng C, Li C. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym. Chem. 2014; (5):1999–2009.
5. Spuch, C, Saida O, Navarro C. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat. Drug Deliv. Formul.2012; (6):2–18.
6. Schlapschy ,Binder U, Börger C, Theobald I,Wachinger K, Kisling S, Haller D, Skerra A. PA Sylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 2013; (26):489–501.
7. Estephan ZG, Schlenoff PS, Schlenoff JB Z witteration as an alternative to PEGylation. Langmuir 2011; (27):6794–6800.
8. Joker’s JV, Lobovkina T, Zane RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.) 2011; (6):715–728.
9. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011 ;(63):136–151.
10. Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014 (190), 485–499.
11. Wang A, Langer RS, Farokhzad, O. Nanoparticle Delivery of Cancer Drugs. Annu. Rev. Med. 2011; (63), 85–98.
12. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol. Pharm. 2011; (8): 2101–2141.
13. Chen Y, Shi J. Mesoporous carbon biomaterials. Sci. China Mater. 2015; (58):241–257.
14. Ugazio E, Gastaldi L, Brielle V, Scalarone D, Jadhav SA, Oliaro-bosso S, Zonari D, Berlier G, Miletto I, Sapino S. Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. Int. J. Pharm. 2016; (511):446–454.
15. Jadhav SA, Miletto I, Brunella V, Berlier G, Scalarone D. Controlled post-synthesis grafting of thermoresponsive poly (N-isopropylacrylamide) on mesoporous silica nanoparticles. Polym. Adv. Technol. 2015; (26):1070–1075.
16. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 2008; (47):8438–8441.
17. An J, Zhang X, Guo, Q.; Zhao, Y.; Wu, Z.; Li, C. Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 2015; (482):98–108.
18. Wang D, Wu S. Red-Light-Responsive Supramolecular Valves for Photocontrolled Drug Release from Mesoporous Nanoparticles. Langmuir 2016; (32):632–636.
19. He D He X Wang K, Cao J, Zhao Y. A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 2012; (28):4003–4008.
20. Martínez-Carmona, M, Baeza A, Rodriguez-Milla MA, García-Castro J, Vallet-Regí M. Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. J. Mater. Chem. B 2015; (3):5746–5752.
21. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano 2015; (9):11023–11033.
22. Guisasola E, Baeza A, Talelli M, Arcos D, Vallet-Regí M. Design of thermoresponsive polymeric gates with opposite controlled release behaviors. RSC Adv. 2016; 6:42510–42516.
23. Guisasola E, Baeza A, Talelli M, Arcos D, Moros M, De La Fuente JM, Vallet-Regí M. Magnetic-Responsive Release Controlled by Hot Spot Effect. Langmuir 2015; (31): 12777–12782.
24. Gondi CS, Rao, J.S. Cathepsin B as a cancer target. Expert Opin. Ther. Targets 2013; (17): 281–291.
25. Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem. 2014; (5):1519.
26. Liu, J.; Zhang, B.; Luo, Z.; Ding, X.; Li, J.; Dai, L.; Zhou, J.; Zhao, X.; Ye, J.; Cai, K. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitroandin vivo. Nanoscale2015; (7):3614–3626.
27. Liu, Y.; Ding, X.; Li, J.; Luo, Z.; Hu, Y.; Liu, J.; Dai, L.; Zhou, J.; Hou, C.; Cai, K. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology 2015; (26):145102.
28. Li, Z.-Y.; Hu, J.-J.; Xu, Q.; Chen, S.; Jia, H.-Z.; Sun, Y.-X.; Zhuo, R.-X.; Zhang, X.-Z. A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles. J.Mater. Chem.B 2015; (3):39–44.
29. Zhao,Q.;Geng,H.;Wang,Y.;Gao,Y.;Huang,J.;Wang,Y.;Zhang,J.;Wang,S.Hyaluronicacidoligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl. Mater. Interfaces 2014; (6):20290–20299.
30. Lee, C.-H.; Lo, L.-W.; Mou, C.-Y.; Yang, C.-Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv. Funct. Mater. 2008; (18):3283–3292.
31. Shao,D.;Zhang,X.;Liu,W.;Zhang,F.;Zheng,X.;Qiao,P.;Li,J.;Dong,W.;Chen,L.JanusSilver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy. ACS Appl. Mater. Interfaces 2016; (8):4303–4308.
32. Rasouli, S.; Davaran, S.; Rasouli, F.; Mahkam, M.; Salehi, R. Positively charged functionalized silica nanoparticles as nontoxic carriers for triggered anticancer drug release. Des. Monomers Polym. 2014; (17):227–237.
33. Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013; (65):157–170.
34. Zheng, H.; Tai, C.-W.; Su, J.; Zou, X.; GAO, F. Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans. 2015; (44):20186–20192.
35. Moorthy, M.S.; Bae, J.H.; Kim, M.J.; Kim, S.H.; Ha, C.S. Design of a novel mesoporous organosilica hybrid microcarrier: A pH stimuli-responsive dual-drug-delivery vehicle for intracellular delivery of anticancer agents. Part. Part. Syst. Charact. 2013; (30):1044–1055.
36. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K.J.A.C. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem.-Int. Edit. 2003; (115):4788–4791.
37. Dai, S.; Ravi, P.; Tam, K.C.pH-Responsive polymers: Synthesis, properties and applications. Soft Matter 2008; (4):435–449.
38. Tang, H.; Luan, Y.; Yang, L.; Sun, H. A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities. Molecules 2018; (23): 2870.
39. Sun, H.; Kabb, C.P.; Dai, Y.; Hill, M.R.; Ghiviriga, I.; Bapat, A.P.; Sumerlin, B.S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017; (9):817–823.
40. Sun, H.; Kabb, C.P.; Sumerlin, B.S. Thermally-labile segmented hyperbranched copolymers: Using reversible-covalent chemistry to investigate the mechanism of self-condensing vinyl copolymerization. Chem. Sci. 2014; (5):4646–4655.
41. Sun,H.; Kabb,C.P.; Sims,M.B.; Sumerlin, B.S.Architecture-transform able polymers: Reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 2018, in press.
42. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017; (8):144–176.
43. Bazban-Shotorbani,S.; Hasani-Sadrabadi, M.M.;Karkhaneh,A.; Serpooshan,V.; Jacob, K.I.;Moshaverinia,A.; Mahmoudi, M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release. 2017; (253):46–63.
44. Ranneh, A.H.; Takemoto, H.; Sakuma, S.; Awaad, A.; Nomoto, T.; Mochida, Y.; Matsui, M.; Tomoda, K.; Naito, M.; Nishiyama, N. An Ethylenediamine-based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angew. Chem. Int. Ed. 2018; (57):5057–5061.
45. Mizuhara, T.; Saha, K.; Moyano, D.F.; Kim, C.S.; Yan, B.; Kim, Y.K.; Rotello, V.M. Acylsulfonamide-Functionalized Zwitterionic Gold Nanoparticles for Enhanced Cellular Uptake at Tumor pH. Angew. Chem. Int. Ed. 2015; (54):6567–6570.
46. Li, Y.; Wang, Z.; Wei, Q.; Luo, M.; Huang, G.; Sumer, B.D.; Gao, J. Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym. Chem. 2016; (7):5949–5956.
47. Ma, X.; Wang, Y.; Zhao, T.; Li, Y.; Su, L.-C.; Wang, Z.; Huang, G.; Sumer, B.D.; Gao, J. Ultra-pH-Sensitive Nanoprobe Library with Broad pH Tunability and Fluorescence Emissions. J. Am. Chem. Soc. 2014; (136):11085–11092.
48. Li, Y.; Wang, Y.; Huang, G.; Gao, J. Cooperativity Principles in Self-Assembled Nanomedicine. Chem. Rev. 2018; (118):5359–5391.
49. Li, Y.; Wang, Y.; Huang, G.; Ma, X.; Zhou, K.; Gao, J. Chaotropic-Anion-Induced Supramolecular Self-Assembly of Ionic Polymeric Micelles. Angew. Chem. Int. Edit. 2014; (53):8074–8078.
50. Wang, C.; Zhao, T.; Li, Y.; Huang, G.; White, M.A.; Gao, J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv. Drug Deliv. Rev. 2017; (113):87–96.
51. Fu, L.; Yuan, P.; Ruan, Z.; Liu, L.; Li, T.; Yan, L. Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. Polym. Chem. 2017; (8):1028–1038.
52. Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Edit. 2001; (40):2004–2021.
53. Weerakkody, D.; Moshnikova, A.; Thakur, M.S.; Moshnikova, V.; Daniels, J.; Engelman, D.M.; Andreev, O.A.; Reshetnyak, Y.K. Family of pH (low) insertion peptides for tumor targeting. P. Natl. Acad. Sci. USA. 2013; (110):5834–5839.
54. Segala, J.; Engelman, D.M.; Reshetnyak, Y.K.; Andreev, O.A. Accurate analysis of tumor margins using a fluorescent pH low insertion peptide (pHLIP). Int. J. Mol. Sci. 2009 (10), 3478–3487.
55. Barrera, F.N.; Fendos, J.; Engelman, D.M. Membrane physical properties influence transmembrane helix formation. P. Natl. Acad. Sci. USA. 2012: (109):14422–14427.
56. Nguyen, V.P.; Alves, D.S.; Scott, H.L.; Davis, F.L.; Barrera, F.N. A novel soluble peptide with pH-responsive membrane insertion. Biochemistry. 2015; (54):6567–6575.
57. Emmetiere,F.; Irwin,C.; Viola-Villegas,N.T.; Longo,V.; Cheal,S.M.; Zanzonico,P.; Pillarsetty,N.; Weber,W.A.; Lewis, J.S.; Reiner, T. 18F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjugate Chem. 2013; (24):1784–1789.
58. Wyatt, L.C.; Lewis, J.S.; Andreev, O.A.; Reshetnyak, Y.K.; Engelman, D.M. Applications of pHLIP technology for cancer imaging and therapy. Trends Biotechnol. 2017; (35):653–664.
59. Hunt, J.F.; Rath, P.; Rothschild, K.J.; Engelman, D.M. Spontaneous, pH-dependent membrane insertion of a transbilayer α-helix. Biochemistry 1997; (36):15177–15192.
60. Reshetnyak, Y.K.; Andreev, O.A.; Lehnert, U.; Engelman, D.M. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. P. Natl. Acad. Sci. USA. 2006; (103):6460–6465.
61. Musial-Siwek, M.; Karabadzhak, A.; Andreev, O.A.; Reshetnyak, Y.K.; Engelman, D.M. Tuning the insertion properties of pHLIP. BBA-Biomembranes. 2010; (1798):1041–1046.
62. Platt,V.M.;SzokaJr,F.C Anticancer therapeutics: Targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol. Pharm. 2008; (5):474–486.
63. Miyazaki, M.; Yuba, E.; Hayashi, H.; Harada, A.; Kono, K. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjugate Chem. 2017; (29):44–55.
64. Wei, H.; Zhuo, R.; Zhang, X. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog. Polym. Sci. 2013; (38):503–535.
65. Zhang, X.; Malhotra, S.; Molina, M.; Haag, R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem. Soc. Rev. 2015; (44):1948–1973.
66. Tang, H.; Tsarevsky, N.V. Lipoates as building blocks of sulfur-containing branched macromolecules. Polym. Chem. 2015; (6):6936–6945.
67. Suvarapu, L.N.; Seo, Y.K.; Baek, S.-O.; Ammireddy, V.R. Review on analytical and biological applications of hydrazones and their metal complexes. E-J Chem. 2012; (9): 1288–1304.
68. Lee, K.Y.; Wang, Y.; Nie, S. In vitro study of a pH-sensitive multifunctional doxorubicin–gold nanoparticle system: Therapeutic effect and surface enhanced Raman scattering. RSC Adv. 2015; (5):65651–65659.
69. Hu, J.; Xie, L.; Zhao, W.; Sun, M.; Liu, X, Gao W. Design of tumor-homing and pH-responsive polypeptide–doxorubicin nanoparticles with enhanced anticancer efficacy and reduced side effects. Chem Commun. 2015; (51):11405–11408.
70. Huang, L.; Tao, K.; Liu, J.; Qi, C.; Xu, L.; Chang, P.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z. interfaces, Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Appl. Mater. Inter. 2016; (8):6577–6585.
71. Liu, B.; Thayumanavan, S. Substituent effects on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J. Am. Chem. Soc. 2017; (139):2306–2317.
72. Chen,Y.;Ai,K.;Liu,J.;Sun,G.;Yin,Q.;Lu,L.Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials 2015; (60):111–120.
73. Wang, L.; Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Acid-disintegratable polymersomes of pH-responsive amphiphilic diblock copolymers for intracellular drug delivery. Macromolecules 2015; (48):7262–7272.
74. Huang,F.;Cheng,R.;Meng,F.;DEng, C.; Zhong, Z.Micelles based on acid degradablepoly (acetalurethane): Preparation, pH-sensitivity, and triggered intracellular drug release. Biomacromolecules 2015; (16):2228–2236.
75. Cao H, Chen C, Xie D, Chen X, Wang P, Wang Y, Song H, Wang W. A hyperbranched amphiphilic acetal polymer for pH-sensitive drug delivery. Polym. Chem. 2018; (9):169–177.
76. Louage B, Zhang Q, Vanparijs N, Voorhaar L, Vande Casteele S, Shi Y, Hennink WE, Van Bocxlaer J, Hoogenboom R, De Geest, B.G. Degradable Ketal-Based Block Copolymer Nanoparticles for Anticancer Drug Delivery: A Systematic Evaluation. Biomacromolecules. 2015; (16):336–350.
77. Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003; 36(13):R182.
78. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008; 108(6):2064–2110.
79. Kalska-Szostko B, Wykowska U, Satuła D. Magnetic nanoparticles of core–shell structure. Colloids Surf A Physicochem Eng Asp, 2015; 481:527–536.
80. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci. 2014; 209:8–39.
81. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release, 2008; 126(3):187–204.
82. Salgueiriño-Maceira V, Correa-Duarte MA. Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater, 2007; 19(23):4131–4144.
83. Misra RDK. Core–shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design. Mater Technol Adv Performance Mater; 2010; 25(3–4):118–126.
84. Yan H, Ga M, Liu K. Chapter 12: Multifunctional magnetic hybrid nanoparticles as a nanomedical platform for cancertargeted imaging and therapy. In: Ghista DN (ed). Biomedical science, engineering and technology, InTech, Rijeka, Croatia. 2012; 283–300.
85. Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuliresponsive magnetic particles for biomedical applications. Int J Pharm. 2011; 403(1–2):139–161.
86. Yang C, Guo W, Cui L, An N, Zhang T, Lin H, Qu F. pH responsive magnetic core-shell nanocomposites for drug delivery. Langmuir. 2014; 30(32):9819–9827.
87. Shen YQ, Pu ML, Jiang W. Polymer-tethered pH-sensitive magnetic nanoparticles for targeted delivery of anti-cancer drug. Adv Mater Res. 2014; 936:723–727.
88. Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D. Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Mater, 2009. 321(18):2799–2804.
89. Wu CL, He H, Gao HJ, Liu G, Ma RJ, An YL, Shi LQ. Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Sci China Chem. 2010; 53(3):514–518.
90. Guo M, Yan Y, Zhang H, Yan H, Cao Y, Liu K, Wan S, Huang J, Yue W. Magnetic and pH-responsive nanocarriers with multilayer core–shell architecture for anticancer drug delivery. J Mater Chem. 2008; 18(42):5104–5112.
91. Yu S, Wu G, Gu X, Wang J, Wang Y, Gao H, et al. Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids Surf B Biointerfaces. 2013; 103:15–22.
92. Shen S, Wu L, Liu J, Xie M, Shen H, Qi X, Yan Y, Ge Y, Jin Y. Core-shell structured Fe3O4@TiO2–doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm, 2015; 486(1–2):380–388.

Published

2019-08-15

How to Cite

Jadhao, A. G., Bhosale, A. G., Sitaphale, G. R., Rajguru, J. R., Sonali, S. A., & S. V. Deshmane, S. V. (2019). MAGNETIC AND pH SENSITIVE NANOPARTICLES FOR CANCER DRUG DELIVERY. Asian Journal of Pharmaceutical Research and Development, 7(4), 60–71. https://doi.org/10.22270/ajprd.v7i4.540