A Review on Acute Respiratory Syndrome Corona Virus 2 (SARS-Cov-2) & Its Preventive Management


  • Vijay Singh Lords International College of Pharmacy, Lords University, Alwar (Rajasthan)




Coronavirus; COVID-19; Pathogenesis; Preparedness; Emergency; Pandemic


At the end of 2019 a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing severe acute respiratory syndrome expanded globally from Wuhan, China. In March 2020 the World Health Organization declared the SARS-Cov-2 virus a global pandemic. Severe Acute Respiratory Syndrome Coronavirus 2 can attack lung cells because there are many conserved receptor entries, namely Angiotensin Converting Enzyme-2. The presence of this virus in host cells will initiate various protective responses leading to pneumonia and Acute Respiratory Distress Syndrome. This review aimed to provide an overview related to this Corona Virus Disease 2019 (COVID-19) epidemiology, pathophysiology, diagnosis, management and future perspective.  We searched PubMed, Medline, Embase and Scopus databases for Severe Acute Respiratory Syndrome Coronavirus-2, Middle East respiratory syndrome-related coronavirus and Severe Acute Respiratory Syndrome Coronavirus. Full texts were retrieved, analyzed and developed into an easy-to-understand review. Although only when the pandemic ends it will be possible to assess the full health, social and economic impact of this global disaster, this review represents a picture of the current state of the art. In particular, we focus on public health impact, pathophysiology and clinical manifestations, diagnosis, case management, emergency response and preparedness. The Ministry of Health and Family Welfare, Government of India and ICMR (Indian Council of Medical Research) has formulated guidelines, advisories for social distancing protocol, diagnosis, management, do’s and don’ts and other reliable material.



Download data is not yet available.

Author Biography

Vijay Singh, Lords International College of Pharmacy, Lords University, Alwar (Rajasthan)

Lords International College of Pharmacy, Lords University, Alwar (Rajasthan)


1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020;382:1199-207.
2. WHO. Coronavirus (COVID-19). https://www.who.int/india/emergencies/covid-19/india -situation: WHO; 2020.
3. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research 2020; 7:1-10.
4. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9:382-5.
5. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med.
6. Bradley M. The Essential Guide to The Wuhan Virus (Symptoms, Transmission and Prevention). Corona Virus, 2020; 2
7. Burke RM, Midgley CM, Dratch A, Fenstersheib M, Haupt T, Holshue M, et al. Active monitoring of persons exposed to patients with confirmed COVID19 — United States, January–February 2020. MMWR Morb Mortal Wkly Rep. 2020.
8. Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020.
9. Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410-1.
10. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. Vital surveillances: the epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) – China. China CDC Weekly. 2020; 2(8):113-22.
11. Alqahtani JS, Oyelade T, Aldhahir AM, Alghamdi SM, Almehmadi M, Alqahtani AS, et al. Prevalence, Severity and Mortality Associated with COPD and Smoking in Patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS One. 2020;15(5):e0233147.
12. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
13. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
14. Spinato G, Fabbris C, Polesel J, Cazzador D, Borsetto D, Hopkins C, et al. Alterations in Smell or Taste in Mildly Symptomatic Outpatients With SARSCoV-2 Infection. JAMA. 2020.
15. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020.
16. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020.
17. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.
18. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020.
19. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020.
20. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barre syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383-4.
21. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020;201187.
22. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020.
23. CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children - United States, February 12-April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):422-6.
24. Russell FM, Reyburn R, Chan J, Tuivaga E, Lim R, Lai J, et al. Impact of the change in WHO's severe pneumonia case definition on hospitalized pneumonia epidemiology: case studies from six countries. Bull World Health Organ. 2019;97(6):386-93.
25. Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2-8.
26. Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med. 2017;45(6):1061-93.
27. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265-9.
28. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human Coronaviruses. Trends Immunol 2020. [10] Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. New York: Springer; 2015. p. 1-23.
29. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. New York: Springer; 2015. p. 1-23.
30. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020.
31. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019;16:69.
32. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020:1-8.
33. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019 nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:1-
34. James MS, Marguerite LM, Tomasz ZJ, James BC PharmacologicTreatments for Coronavirus Disease 2019 (COVID-19). JAMA, 2020; 323(18): 1824-1836. Published online April13,2020.
35. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. Published online March 4, 2020.
36. Chen Y, Liu Q, Guo D. Emerging corona viruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418-423.
37. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol.2015; 1282: 1-23.
38. Fung TS, Liu DX. Corona virus infection, ER stresses, apoptosis and innate immunity. Front Microbiol.2014; 5: 296.
39. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003; 3(11):722-727.
40. Al-Bari MAA.Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect.2017; 5(1):e00293.
41. Lei J, Kusov Y, Hilgenfeld R, Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antivir. Res. 2018; 149, 58–74.
42. Letko M, Marzi A, Munster V, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020; 5:562–569.
43. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R, Features, evaluation and treatment coronavirus (COVID-19). In Stat Pearls; Stat Pearls Publishing: Treasure Island, FL, USA, 2020. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554776/ (accessed on 31 March 2020).
44. Francesco DG, Damiano P, , Claudia M, Mario A, et al. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. Int. J. Environ. Res. Public Health, 2020; 17: 2690.
45. Pyle CJ, Uwadiae FI, Swieboda DP, Harker JA, Early IL-6 signalling promotes IL-27 dependent maturation of regulatory Tcells in the lungs and resolution of viral immunopathology. PLoS Pathog. 2017,13.
46. Chen C, Zhang XR, Ju ZY, He WF, Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shao Shang Za Zhi, 2020, 36.
47. Bennardo F, Buffone C, Giudice A, New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 2020.
48. Rose-John S, Interleukin-6 family cytokines. ColdSpringHarb. Perspect. Biol. 2018, 10.
49. Lupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S, 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J. Glob. Antimicrob. Resist. 2020, 21, 22–27.
50. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, Sun J, Chang C, The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun. 2020.
51. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus [2019-nCoV] infected pneumonia [standard version]. Mil Med Res. 2020;7:4.
52. Huang P, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020.
53. Wang,H.;Wang,S.;Yu,K.COVID-19infectionepidemic: The medical management strategies in Heilongjiang Province, China. Crit. Care 2020, 24, 107.
54. Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med. 2020, 13, 1–26.
55. Chinese Association of Rehabilitation Medicine; Respiratory rehabilitation committee of Chinese Association of Rehabilitation Medicine. Cardiopulmonary rehabilitation group of Chinese society of physicai medicine and rehabilitation. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, E029.
56. Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473–475.
57. Arabi, Y.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Almekhlafi, G.A.; Hussein, M.A.; Jose, J.; Pinto, R.; Al-Omari, A.; Kharaba, A.; et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am. J. Respir. Crit. Care Med. 2018, 197, 757–767.
58. World Health Organization Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection is Suspected. Available online: https://www.who.int/publications-detail/ clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-issuspected (accessed on 28 March 2020).
59. Lee N, Chan KCA, Hui DS, et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J. Clin. Virol. 2004, 31, 304–309.
60. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol.Proc Natl Acad SciUSA.2017;114(2):206214.
61. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. Published online March 4, 2020.
62. Gurwitz D, Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. Published online March4,2020.
63. Zhou D, Dai SM, Tong Q, COVID-19: are commendation to examine the effect of hydroxyl chloroquine in preventing infection and progression.[published online March 20, 2020]. J Antimicrob Chemother.2020; dkaa114.
64. Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020.
65. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G.; et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271.
66. Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020;105923.
67. Philippe C, Jean-Marc R, Jean-Christophe L, et al., Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int J Antimicrobial Agents (2020)
68. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis Published Online First: 9 March 2020.
69. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res Published Online First: 4 February 2020.
70. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2:69.
71. Amy Woodyatt, Julia Hollingsworth, Ben Westcott, Adam Renton, Meg Wagner and Mike Hayes ,March 30 coronavirus news https://edition.cnn.com/world/livenews/coronavirus-outbreak-03-30-20-intlhnk/h_e3d184969ee949b7200a3361b6010bde. Last accessed on (31-March-2020)
72. Gautret P, Lagier J, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949.
73. Chu CM, Cheng VC, HungI F, et al; HKU/UCH SARS Study Group. Role of lopinavir /ritonavirin the treatment of SARS : initial virological and clinical findings.Thorax.2004;59(3): 252-256.
74. de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome corona virus replication in cell culture. Antimicrob Agents Chemother. 2014; 58(8): 4875-4884.
75. Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; et al. Drug targets for corona virus: A systematic review. Indian J. Pharmacol. 2020, 52, 56–65.
76. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N.Engl. J.Med. 2020, 10, 1056.
77. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther.2020;14(1):58-60.
78. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoSMed. 2006;3(9):e343.
79. Foolad F, Aitken SL, Shigle TL, etal. Oral versus aerosolized ribavirin for the treatment of respiratory syncytial virus infections in hematopoietic cell transplant recipients. Clin In fect Dis.2019; 68(10):1641-1649.
80. Siegel D, Hui HC, Doerffler E, etal. Discovery and synthesis of a phosphoramidate prodrug of apyrrolo [2,1-f] [triazin-4-amino]adenine C-nucleoside(GS-5734) for the treatment of Ebola and emerging viruses. J Med Chem. 2017; 60(5): 1648-1661.
81. Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Gotte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779.
82. de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776.
83. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), abroad spectrum inhibitor of viral RNA polymerase. Proc J pnAcadSerB PhysBiolSci.2017; 93(7):449-463.
84. Biggioggero M, Crotti C, Becciolini A, Favalli EG., Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Dev. Ther. 2018, 13, 57–70.
85. Yang X, Yu Y, Xu J, Shu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 2600, 1–7.
86. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50.
87. Lin L, Lu L, Cao W, Li T., Hypothesis for potential pathogenesis of SARS-CoV-2 infection–A review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020, 0, 1–14.
88. Watkins J., Preventing a covid-19 pandemic. BMJ 2020, 368.
89. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw F-M, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. The Journal of infectious diseases. 2015; 211(1):80-90.
90. Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus. 2015; 4: 709.
91. Hung IF, To KK, Lee C-K, Lee K-L, Chan K, Yan W-W, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011;52(4):447-56. 22.
92. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58:4875–4884.
93. US. Food and Dru Administration. Available at: https://www.fda.gov/vaccines-blood biologics /investigational-new-drug-ind-or-device-exemption-ide- processcber / investigational - covid-19-convalescent- plasma-emergency-inds. Last accessed on (25-03-2020).
94. World Health Organization. Coronavirus disease [COVID-19] Technical Guidance: Infection Prevention and Control. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus2019/technical-guidance/infection-prevention-and-control. Accessed 20 Feb 2020.
95. Q&A: Ethics and COVID-19: resource allocation and priority setting. Geneva: World Health Organization; 2020 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/ethics-and-covid-19, accessed 14 May 2020).
96. Managing ethical issues in infectious disease outbreaks. Geneva: World Health Organization; 2016 (https://www.who.int/ethics/publications/infectiousdisease-outbreaks/en/, accessed 13 May 2020).



How to Cite

Singh, V. (2020). A Review on Acute Respiratory Syndrome Corona Virus 2 (SARS-Cov-2) & Its Preventive Management. Asian Journal of Pharmaceutical Research and Development, 8(3), 142–151. https://doi.org/10.22270/ajprd.v8i3.723